These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26902824)

  • 21. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.
    Luo J; Song G; Liu J; Qian G; Xu ZP
    J Colloid Interface Sci; 2014 Dec; 435():21-5. PubMed ID: 25217726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron.
    Hou M; Li F; Liu X; Wang X; Wan H
    J Hazard Mater; 2007 Jun; 145(1-2):305-14. PubMed ID: 17166657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound.
    Liu H; Li G; Qu J; Liu H
    J Hazard Mater; 2007 Jun; 144(1-2):180-6. PubMed ID: 17125919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange.
    Yun DM; Cho HH; Jang JW; Park JW
    Water Res; 2013 Apr; 47(5):1858-66. PubMed ID: 23375600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method.
    Zhou M; Yu J; Cheng B
    J Hazard Mater; 2006 Oct; 137(3):1838-47. PubMed ID: 16777319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sono-advanced Fenton decolorization of azo dye Orange G: Analysis of synergistic effect and mechanisms.
    Cai M; Su J; Lian G; Wei X; Dong C; Zhang H; Jin M; Wei Z
    Ultrason Sonochem; 2016 Jul; 31():193-200. PubMed ID: 26964940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst.
    Safavi A; Momeni S
    J Hazard Mater; 2012 Jan; 201-202():125-31. PubMed ID: 22177016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fe-based Metallic Glasses in Functional Catalytic Applications.
    Zhang LC; Liang SX
    Chem Asian J; 2018 Dec; 13(23):3575-3592. PubMed ID: 30225995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient degradation of dye pollutants by Ce-doped MoO₃ catalyst at room temperature.
    Jin Y; Li N; Liu H; Hua X; Zhang Q; Chen M; Teng F
    Dalton Trans; 2014 Sep; 43(34):12860-70. PubMed ID: 25019412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.
    Zhang W; Li L; Lin K; Xiong B; Li B; Lu S; Guo M; Cui X
    Water Sci Technol; 2012; 65(12):2258-64. PubMed ID: 22643424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron.
    Lu X; Shih K; Liu C; Wang F
    Environ Sci Technol; 2013 Sep; 47(17):9972-8. PubMed ID: 23915263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic Fe(2)MO(4) (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange.
    Nguyen TD; Phan NH; Do MH; Ngo KT
    J Hazard Mater; 2011 Jan; 185(2-3):653-61. PubMed ID: 20952129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR study of ligand exchange and electron self-exchange between oxo-centered trinuclear clusters [Fe3(μ3-O)(μ-O2CR)6(4-R'py)3](+/0).
    Novitchi G; Helm L; Anson C; Powell AK; Merbach AE
    Inorg Chem; 2011 Oct; 50(20):10402-16. PubMed ID: 21928781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T; Matsubara E; Chen HS; Saida J; Yamamoto T; Nishiyama N
    J Chem Phys; 2006 Oct; 125(15):154502. PubMed ID: 17059267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water.
    Chen J; Zhu L
    Chemosphere; 2006 Nov; 65(7):1249-55. PubMed ID: 16735046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective degradation of para-chloronitrobenzene through a sequential treatment using zero-valent iron reduction and Fenton oxidation.
    Le C; Liang J; Wu J; Li P; Wang X; Zhu N; Wu P; Yang B
    Water Sci Technol; 2011; 64(10):2126-31. PubMed ID: 22105138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxalate enhanced mechanism of hydroxyl-Fe-pillared bentonite during the degradation of Orange II by UV-Fenton process.
    Chen J; Zhu L
    J Hazard Mater; 2011 Jan; 185(2-3):1477-81. PubMed ID: 21075517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity.
    Zhu S; Xie G; Qin F; Wang X; Inoue A
    J Mech Behav Biomed Mater; 2012 Sep; 13():166-73. PubMed ID: 22898203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast Degradation of Azo Dyes by In Situ Mg-Zn-Ca-Sr Metallic Glass Matrix Composite.
    Jin R; Wang G; Wang X; Yang W; Qi Y
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.