These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 26902925)
21. Soft hydrogels interpenetrating silicone--A polymer network for drug-releasing medical devices. Steffensen SL; Vestergaard MH; Møller EH; Groenning M; Alm M; Franzyk H; Nielsen HM J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):402-10. PubMed ID: 25892578 [TBL] [Abstract][Full Text] [Related]
22. Composite Cellularized Structures Created from an Interpenetrating Polymer Network Hydrogel Reinforced by a 3D Woven Scaffold. Moffat KL; Goon K; Moutos FT; Estes BT; Oswald SJ; Zhao X; Guilak F Macromol Biosci; 2018 Oct; 18(10):e1800140. PubMed ID: 30040175 [TBL] [Abstract][Full Text] [Related]
23. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Hung KC; Tseng CS; Dai LG; Hsu SH Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563 [TBL] [Abstract][Full Text] [Related]
24. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Holmes B; Bulusu K; Plesniak M; Zhang LG Nanotechnology; 2016 Feb; 27(6):064001. PubMed ID: 26758780 [TBL] [Abstract][Full Text] [Related]
25. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Chen YW; Shen YF; Ho CC; Yu J; Wu YA; Wang K; Shih CT; Shie MY Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():679-687. PubMed ID: 30033302 [TBL] [Abstract][Full Text] [Related]
26. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
27. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Lin CH; Lin WC; Yang MC Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049 [TBL] [Abstract][Full Text] [Related]
28. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
29. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Lee J; Farag MM; Park EK; Lim J; Yun HS Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():252-60. PubMed ID: 24433911 [TBL] [Abstract][Full Text] [Related]
30. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Vijayaraghavan R; Loganathan S; Valapa RB Macromol Biosci; 2024 Oct; 24(10):e2400136. PubMed ID: 39096155 [TBL] [Abstract][Full Text] [Related]
32. Proliferative and Differentiation Potential of Multipotent Mesenchymal Stem Cells Cultured on Biocompatible Polymer Scaffolds with Various Physicochemical Characteristics. Rodina AV; Tenchurin TK; Saprykin VP; Shepelev AD; Mamagulashvili VG; Grigor'ev TE; Moskaleva EY; Chvalun SN; Severin SE Bull Exp Biol Med; 2017 Feb; 162(4):488-495. PubMed ID: 28243915 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable and photocrosslinkable polyphosphoester hydrogel. Li Q; Wang J; Shahani S; Sun DD; Sharma B; Elisseeff JH; Leong KW Biomaterials; 2006 Mar; 27(7):1027-34. PubMed ID: 16125222 [TBL] [Abstract][Full Text] [Related]
34. The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Duarte Campos DF; Blaeser A; Korsten A; Neuss S; Jäkel J; Vogt M; Fischer H Tissue Eng Part A; 2015 Feb; 21(3-4):740-56. PubMed ID: 25236338 [TBL] [Abstract][Full Text] [Related]
35. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187 [TBL] [Abstract][Full Text] [Related]
36. Three-dimensional Printed Scaffolds with Gelatin and Platelets Enhance Zhu W; Xu C; Ma BP; Zheng ZB; Li YL; Ma Q; Wu GL; Weng XS Chin Med J (Engl); 2016 Nov; 129(21):2576-2581. PubMed ID: 27779164 [TBL] [Abstract][Full Text] [Related]
37. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Chatzinikolaidou M; Rekstyte S; Danilevicius P; Pontikoglou C; Papadaki H; Farsari M; Vamvakaki M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():301-9. PubMed ID: 25579927 [TBL] [Abstract][Full Text] [Related]
38. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]