These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 26902925)
41. Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies. Yilmaz H; Bedir T; Gursoy S; Kaya E; Senel I; Tinaz GB; Gunduz O; Ustundag CB Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38838701 [TBL] [Abstract][Full Text] [Related]
42. Biomimetic modification of dual porosity poly(2-hydroxyethyl methacrylate) hydrogel scaffolds-porosity and stem cell growth evaluation. Janoušková O; Přádný M; Vetrík M; Chylíková Krumbholcová E; Michálek J; Dušková Smrčková M Biomed Mater; 2019 Jul; 14(5):055004. PubMed ID: 31181551 [TBL] [Abstract][Full Text] [Related]
43. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. Park SJ; Li Z; Hwang IN; Huh KM; Min KS J Endod; 2013 Aug; 39(8):1001-7. PubMed ID: 23880267 [TBL] [Abstract][Full Text] [Related]
44. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Fedorovich NE; Kuipers E; Gawlitta D; Dhert WJ; Alblas J Tissue Eng Part A; 2011 Oct; 17(19-20):2473-86. PubMed ID: 21599540 [TBL] [Abstract][Full Text] [Related]
45. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Luo Y; Wu C; Lode A; Gelinsky M Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963 [TBL] [Abstract][Full Text] [Related]
46. 3D printed high-resolution scaffold with hydrogel microfibers for providing excellent biocompatibility. Ye W; Xie C; Liu Y; He Y; Gao Q; Ouyang A J Biomater Appl; 2021 Jan; 35(6):633-642. PubMed ID: 32996360 [TBL] [Abstract][Full Text] [Related]
47. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978 [TBL] [Abstract][Full Text] [Related]
48. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Tong X; Yang F Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710 [TBL] [Abstract][Full Text] [Related]
49. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081 [TBL] [Abstract][Full Text] [Related]
50. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941 [TBL] [Abstract][Full Text] [Related]
51. Multilayered Shape-Morphing Scaffolds with a Hierarchical Structure for Uterine Tissue Regeneration. Chen S; Tan S; Zheng L; Wang M ACS Appl Mater Interfaces; 2024 Feb; 16(6):6772-6788. PubMed ID: 38295266 [TBL] [Abstract][Full Text] [Related]
52. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
53. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Miao S; Zhu W; Castro NJ; Nowicki M; Zhou X; Cui H; Fisher JP; Zhang LG Sci Rep; 2016 Jun; 6():27226. PubMed ID: 27251982 [TBL] [Abstract][Full Text] [Related]
54. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
55. Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization. Liu Y; Liu X; Zhang Y; Cao Y; Luo B; Wang Z; Pei R Biomacromolecules; 2023 Dec; 24(12):5977-5988. PubMed ID: 37939799 [TBL] [Abstract][Full Text] [Related]
56. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Merceron TK; Burt M; Seol YJ; Kang HW; Lee SJ; Yoo JJ; Atala A Biofabrication; 2015 Jun; 7(3):035003. PubMed ID: 26081669 [TBL] [Abstract][Full Text] [Related]
57. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin. Ding F; Hsu SH; Wu DH; Chiang WY J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879 [TBL] [Abstract][Full Text] [Related]
58. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
59. A tough, precision-porous hydrogel scaffold: ophthalmologic applications. Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856 [TBL] [Abstract][Full Text] [Related]
60. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]