These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26902928)

  • 21. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine.
    Mansouri S; Bunch AW
    J Gen Microbiol; 1989 Nov; 135(11):2819-27. PubMed ID: 2559143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methionine gamma-lyase: mechanistic deductions from the kinetic pH-effects. The role of the ionic state of a substrate in the enzymatic activity.
    Faleev NG; Alferov KV; Tsvetikova MA; Morozova EA; Revtovich SV; Khurs EN; Vorob'ev MM; Phillips RS; Demidkina TV; Khomutov RM
    Biochim Biophys Acta; 2009 Oct; 1794(10):1414-20. PubMed ID: 19501676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli.
    Shipston N; Bunch AW
    J Gen Microbiol; 1989 Jun; 135(6):1489-97. PubMed ID: 2693600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and immobilization of purified Aspergillus flavipesl-methioninase: continuous production of methanethiol.
    El-Sayed AS; Shindia AA
    J Appl Microbiol; 2011 Jul; 111(1):54-69. PubMed ID: 21466637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.
    Zha M; Sun B; Yin S; Mehmood A; Cheng L; Wang C
    J Agric Food Chem; 2018 Mar; 66(9):2114-2120. PubMed ID: 29436228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial L-methioninase: production, molecular characterization, and therapeutic applications.
    El-Sayed AS
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):445-67. PubMed ID: 20146062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assay method for antitumor L-methionine gamma-lyase: comprehensive kinetic analysis of the complex reaction with L-methionine.
    Takakura T; Mitsushima K; Yagi S; Inagaki K; Tanaka H; Esaki N; Soda K; Takimoto A
    Anal Biochem; 2004 Apr; 327(2):233-40. PubMed ID: 15051540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of a methionine gamma-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway.
    Goyer A; Collakova E; Shachar-Hill Y; Hanson AD
    Plant Cell Physiol; 2007 Feb; 48(2):232-42. PubMed ID: 17169919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of L-methionine linked to the biosynthesis of volatile organic sulfur-containing compounds during the submerged fermentation of Tuber melanosporum.
    Liu RS; Zhou H; Li HM; Yuan ZP; Chen T; Tang YJ
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):9981-92. PubMed ID: 24092005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey.
    Hoffman RM
    Expert Opin Biol Ther; 2015 Jan; 15(1):21-31. PubMed ID: 25439528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exchange reactions catalyzed by methioninase from Pseudomonas putida.
    Ito S; Nakamura T; Eguchi Y
    J Biochem; 1975 Nov; 78(5):1105-7. PubMed ID: 1213994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of recombinant Staphylococcus haemolyticus cystathionine beta-lyase (metC) and its potential role in the generation of volatile thiols in axillary malodor.
    Troccaz M; Benattia F; Borchard G; Clark AJ
    Chem Biodivers; 2008 Nov; 5(11):2372-85. PubMed ID: 19035565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli.
    Primrose SB
    J Gen Microbiol; 1977 Feb; 98(2):519-28. PubMed ID: 16080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of substrate-dependent microbialy produced ethylene on plant growth].
    Khalid A; Akhtar MH; Makhmood MH; Arshad M
    Mikrobiologiia; 2006; 75(2):277-83. PubMed ID: 16758878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathways that produce volatile sulphur compounds from methionine in Oenococcus oeni.
    Vallet A; Lucas P; Lonvaud-Funel A; de Revel G
    J Appl Microbiol; 2008 Jun; 104(6):1833-40. PubMed ID: 18217924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survival efficacy of the combination of the methioninase gene and methioninase in a lung cancer orthotopic model.
    Miki K; Xu M; An Z; Wang X; Yang M; Al-Refaie W; Sun X; Baranov E; Tan Y; Chishima T; Shimada H; Moossa AR; Hoffman RM
    Cancer Gene Ther; 2000 Feb; 7(2):332-8. PubMed ID: 10770644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site.
    Yan W; Stone E; Zhang YJ
    Biochemistry; 2017 Feb; 56(6):876-885. PubMed ID: 28106980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissimilation of methionine by a demethiolase of Aspergillus species.
    Ruiz-Herrera J; Starkey RL
    J Bacteriol; 1969 Sep; 99(3):764-70. PubMed ID: 5370277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethylene formation by cell-free extracts of Escherichia coli.
    Ince JE; Knowles CJ
    Arch Microbiol; 1986 Nov; 146(2):151-8. PubMed ID: 3541827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of sulfur-containing amino acids.
    Stipanuk MH
    Annu Rev Nutr; 1986; 6():179-209. PubMed ID: 3524616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.