These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26903224)

  • 1. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye.
    Sharma R; Williams DR; Palczewska G; Palczewski K; Hunter JJ
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):632-46. PubMed ID: 26903224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic.
    Morgan JI; Dubra A; Wolfe R; Merigan WH; Williams DR
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1350-9. PubMed ID: 18952914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones.
    Sharma R; Schwarz C; Williams DR; Palczewska G; Palczewski K; Hunter JJ
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):647-57. PubMed ID: 26903225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation.
    Vienola KV; Zhang M; Snyder VC; Dansingani KK; Sahel JA; Rossi EA
    Eye (Lond); 2022 Oct; 36(10):1878-1883. PubMed ID: 34462582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium.
    Morgan JI; Hunter JJ; Masella B; Wolfe R; Gray DC; Merigan WH; Delori FC; Williams DR
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3715-29. PubMed ID: 18408191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous fluorophores enable two-photon imaging of the primate eye.
    Palczewska G; Golczak M; Williams DR; Hunter JJ; Palczewski K
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4438-47. PubMed ID: 24970255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized Photoreceptor Ablation Using Femtosecond Pulses Focused With Adaptive Optics.
    Dhakal KR; Walters S; McGregor JE; Schwarz C; Strazzeri JM; Aboualizadeh E; Bateman B; Huxlin KR; Hunter JJ; Williams DR; Merigan WH
    Transl Vis Sci Technol; 2020 Jun; 9(7):16. PubMed ID: 32832223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reduction of retinal autofluorescence caused by light exposure.
    Morgan JI; Hunter JJ; Merigan WH; Williams DR
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):6015-22. PubMed ID: 19628734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near Infrared Autofluorescence Lifetime Imaging of Human Retinal Pigment Epithelium Using Adaptive Optics Scanning Light Ophthalmoscopy.
    Kunala K; Tang JAH; Bowles Johnson KE; Huynh KT; Parkins K; Kim HJ; Yang Q; Sparrow JR; Hunter JJ
    Invest Ophthalmol Vis Sci; 2024 May; 65(5):27. PubMed ID: 38758638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy.
    Sharma R; Schwarz C; Hunter JJ; Palczewska G; Palczewski K; Williams DR
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):604-613. PubMed ID: 28129424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Retinal Pigment Epithelium: In Vivo Cell Morphometry, Multispectral Autofluorescence, and Relationship to Cone Mosaic.
    Granger CE; Yang Q; Song H; Saito K; Nozato K; Latchney LR; Leonard BT; Chung MM; Williams DR; Rossi EA
    Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):5705-5716. PubMed ID: 30513531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium.
    Palczewska G; Kern TS; Palczewski K
    Methods Mol Biol; 2019; 1834():333-343. PubMed ID: 30324453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging individual neurons in the retinal ganglion cell layer of the living eye.
    Rossi EA; Granger CE; Sharma R; Yang Q; Saito K; Schwarz C; Walters S; Nozato K; Zhang J; Kawakami T; Fischer W; Latchney LR; Hunter JJ; Chung MM; Williams DR
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):586-591. PubMed ID: 28049835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging retinal mosaics in the living eye.
    Rossi EA; Chung M; Dubra A; Hunter JJ; Merigan WH; Williams DR
    Eye (Lond); 2011 Mar; 25(3):301-8. PubMed ID: 21390064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry.
    Tuten WS; Vergilio GK; Young GJ; Bennett J; Maguire AM; Aleman TS; Brainard DH; Morgan JIW
    Ophthalmol Retina; 2019 Oct; 3(10):888-899. PubMed ID: 31235310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution Adaptive Optics in Vivo Autofluorescence Imaging in Stargardt Disease.
    Song H; Rossi EA; Yang Q; Granger CE; Latchney LR; Chung MM
    JAMA Ophthalmol; 2019 Jun; 137(6):603-609. PubMed ID: 30896765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent anti-stokes Raman scattering (CARS) microscopy: a novel technique for imaging the retina.
    Masihzadeh O; Ammar DA; Kahook MY; Lei TC
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3094-101. PubMed ID: 23580484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization.
    Schallek J; Geng Y; Nguyen H; Williams DR
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8237-50. PubMed ID: 24150762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative fundus autofluorescence in healthy eyes.
    Greenberg JP; Duncker T; Woods RL; Smith RT; Sparrow JR; Delori FC
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5684-93. PubMed ID: 23860757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure.
    Karl A; Agte S; Zayas-Santiago A; Makarov FN; Rivera Y; Benedikt J; Francke M; Reichenbach A; Skatchkov SN; Bringmann A
    Exp Eye Res; 2018 Aug; 173():160-178. PubMed ID: 29753728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.