BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26903295)

  • 1. c-Jun N-terminal kinase regulates the nucleoplasmic translocation and stability of nucleolar GLTSCR2 protein.
    Lee S; Cho YE; Kim YJ; Park JH
    Biochem Biophys Res Commun; 2016 Mar; 472(1):95-100. PubMed ID: 26903295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GLTSCR2 is an upstream negative regulator of nucleophosmin in cervical cancer.
    Kim JY; Cho YE; An YM; Kim SH; Lee YG; Park JH; Lee S
    J Cell Mol Med; 2015 Jun; 19(6):1245-52. PubMed ID: 25818168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF.
    Lee S; Cho YE; Kim SH; Kim YJ; Park JH
    Oncotarget; 2017 Mar; 8(10):16293-16302. PubMed ID: 27323397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nucleolar Protein GLTSCR2 Is an Upstream Negative Regulator of the Oncogenic Nucleophosmin-MYC Axis.
    Kim JY; Cho YE; Park JH
    Am J Pathol; 2015 Jul; 185(7):2061-8. PubMed ID: 25956029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway.
    Yogev O; Saadon K; Anzi S; Inoue K; Shaulian E
    Cancer Res; 2008 Mar; 68(5):1398-406. PubMed ID: 18316603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses.
    Lee S; Kim JY; Kim YJ; Seok KO; Kim JH; Chang YJ; Kang HY; Park JH
    Cell Death Differ; 2012 Oct; 19(10):1613-22. PubMed ID: 22522597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-induced activation of c-Jun N-terminal kinase in sensory ganglion neurons: accumulation in nuclear domains enriched in splicing factors and distribution in perichromatin fibrils.
    Pena E; Berciano MT; Fernandez R; Crespo P; Lafarga M
    Exp Cell Res; 2000 Apr; 256(1):179-91. PubMed ID: 10739665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase.
    Liu M; Aneja R; Sun X; Xie S; Wang H; Wu X; Dong JT; Li M; Joshi HC; Zhou J
    J Biol Chem; 2008 Dec; 283(51):35783-8. PubMed ID: 18845538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of RASSF1C from the nucleus by Daxx degradation links DNA damage and SAPK/JNK activation.
    Kitagawa D; Kajiho H; Negishi T; Ura S; Watanabe T; Wada T; Ichijo H; Katada T; Nishina H
    EMBO J; 2006 Jul; 25(14):3286-97. PubMed ID: 16810318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase.
    Fuchs SY; Dolan L; Davis RJ; Ronai Z
    Oncogene; 1996 Oct; 13(7):1531-5. PubMed ID: 8875991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability.
    Latonen L; Moore HM; Bai B; Jäämaa S; Laiho M
    Oncogene; 2011 Feb; 30(7):790-805. PubMed ID: 20956947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway.
    Chen H; Han L; Tsai H; Wang Z; Wu Y; Duo Y; Cao W; Chen L; Tan Z; Xu N; Huang X; Zhuang J; Huang L
    Oncotarget; 2016 Dec; 7(50):83241-83257. PubMed ID: 27829214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Jun transactivates Puma gene expression to promote osteoarthritis.
    Lu H; Hou G; Zhang Y; Dai Y; Zhao H
    Mol Med Rep; 2014 May; 9(5):1606-12. PubMed ID: 24566851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein.
    Maehama T; Kawahara K; Nishio M; Suzuki A; Hanada K
    J Biol Chem; 2014 Jul; 289(30):20802-12. PubMed ID: 24923447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL-1beta induces MMP-9 expression via a Ca2+-dependent CaMKII/JNK/c-JUN cascade in rat brain astrocytes.
    Wu CY; Hsieh HL; Sun CC; Yang CM
    Glia; 2009 Dec; 57(16):1775-89. PubMed ID: 19455716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia.
    Lin HY; Tang CH; Chen JH; Chuang JY; Huang SM; Tan TW; Lai CH; Lu DY
    J Cell Physiol; 2011 Jun; 226(6):1573-82. PubMed ID: 20945380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLTSCR2 contributes to the death resistance and invasiveness of hypoxia-selected cancer cells.
    Kim JY; Park JH; Lee S
    FEBS Lett; 2012 Sep; 586(19):3435-40. PubMed ID: 22850112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of nucleolar effects in JNK-deficient cells.
    Mialon A; Thastrup J; Kallunki T; Mannermaa L; Westermarck J; Holmström TH
    FEBS Lett; 2008 Sep; 582(20):3145-51. PubMed ID: 18703060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells.
    Chen JH; Zhang P; Chen WD; Li DD; Wu XQ; Deng R; Jiao L; Li X; Ji J; Feng GK; Zeng YX; Jiang JW; Zhu XF
    Autophagy; 2015; 11(2):239-52. PubMed ID: 25701194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JNK regulates MCP-1 expression in adenovirus type 19-infected human corneal fibroblasts.
    Xiao J; Chodosh J
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3777-82. PubMed ID: 16186362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.