These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 26903561)
1. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer. Depciuch J; Kaznowska E; Zawlik I; Wojnarowska R; Cholewa M; Heraud P; Cebulski J Appl Spectrosc; 2016 Feb; 70(2):251-63. PubMed ID: 26903561 [TBL] [Abstract][Full Text] [Related]
2. The Spectroscopic Similarity between Breast Cancer Tissues and Lymph Nodes Obtained from Patients with and without Recurrence: A Preliminary Study. Depciuch J; Stanek-Widera A; Khinevich N; Bandarenka HV; Kandler M; Bayev V; Fedotova J; Lange D; Stanek-Tarkowska J; Cebulski J Molecules; 2020 Jul; 25(14):. PubMed ID: 32708082 [TBL] [Abstract][Full Text] [Related]
3. Incorporating cytochrome P450 3A4 genotype expression and FT-IR/Raman spectroscopy data as means of identification of breast tumors. Miller SO; Ewing GP; Howard C; Tachikawa H; Bigler SA; Barber WH; Angel M; McDaniel DO Biomed Sci Instrum; 2003; 39():24-9. PubMed ID: 12724863 [TBL] [Abstract][Full Text] [Related]
4. Resonance Raman and Raman spectroscopy for breast cancer detection. Liu CH; Zhou Y; Sun Y; Li JY; Zhou LX; Boydston-White S; Masilamani V; Zhu K; Pu Y; Alfano RR Technol Cancer Res Treat; 2013 Aug; 12(4):371-82. PubMed ID: 23448574 [TBL] [Abstract][Full Text] [Related]
5. Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Brozek-Pluska B; Musial J; Kordek R; Bailo E; Dieing T; Abramczyk H Analyst; 2012 Aug; 137(16):3773-80. PubMed ID: 22754917 [TBL] [Abstract][Full Text] [Related]
6. Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model. Kast RE; Serhatkulu GK; Cao A; Pandya AK; Dai H; Thakur JS; Naik VM; Naik R; Klein MD; Auner GW; Rabah R Biopolymers; 2008 Mar; 89(3):235-41. PubMed ID: 18041066 [TBL] [Abstract][Full Text] [Related]
7. A biospectroscopic interrogation of fine needle aspirates points towards segregation between graded categories: an initial study towards diagnostic screening. Kelly JG; Ahmadzai AA; Hermansen P; Pitt MA; Saidan Z; Martin-Hirsch PL; Martin FL Anal Bioanal Chem; 2011 Aug; 401(3):957-67. PubMed ID: 21660416 [TBL] [Abstract][Full Text] [Related]
9. Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy. Bitar RA; Martinho Hda S; Tierra-Criollo CJ; Zambelli Ramalho LN; Netto MM; Martin AA J Biomed Opt; 2006; 11(5):054001. PubMed ID: 17092150 [TBL] [Abstract][Full Text] [Related]
10. Dielectric and FT-Raman spectroscopic approach to molecular identification of breast tumor tissues. Abd El-Hakam R; Khalil S; Mahani R Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():208-12. PubMed ID: 26142175 [TBL] [Abstract][Full Text] [Related]
11. Differences and Relationships Between Normal and Atypical Ductal Hyperplasia, Ductal Carcinoma In Situ, and Invasive Ductal Carcinoma Tissues in the Breast Based on Raman Spectroscopy. Han B; Du Y; Fu T; Fan Z; Xu S; Hu C; Bi L; Gao T; Zhang H; Xu W Appl Spectrosc; 2017 Feb; 71(2):300-307. PubMed ID: 28181469 [TBL] [Abstract][Full Text] [Related]
12. Infrared and Raman imaging spectroscopy of ex vivo skin. Flach CR; Moore DJ Int J Cosmet Sci; 2013 Apr; 35(2):125-35. PubMed ID: 23106608 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared and Raman microspectroscopy of materials in tissue. Kalasinsky VF; Johnson FB; Ferwerda R Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):141-4. PubMed ID: 9551646 [TBL] [Abstract][Full Text] [Related]
14. Raman and FTIR spectroscopy in determining the chemical changes in healthy brain tissues and glioblastoma tumor tissues. Depciuch J; Tołpa B; Witek P; Szmuc K; Kaznowska E; Osuchowski M; Król P; Cebulski J Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117526. PubMed ID: 31655362 [TBL] [Abstract][Full Text] [Related]
15. Raman 'optical biopsy' of human breast cancer. Abramczyk H; Brozek-Pluska B; Surmacki J; Jablonska-Gajewicz J; Kordek R Prog Biophys Mol Biol; 2012 Jan; 108(1-2):74-81. PubMed ID: 22122914 [TBL] [Abstract][Full Text] [Related]
16. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980 [TBL] [Abstract][Full Text] [Related]
17. Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Chowdary MV; Kumar KK; Kurien J; Mathew S; Krishna CM Biopolymers; 2006 Dec; 83(5):556-69. PubMed ID: 16897764 [TBL] [Abstract][Full Text] [Related]
18. FTIR and Raman microspectroscopy of normal, benign, and malignant formalin-fixed ovarian tissues. Krishna CM; Sockalingum GD; Bhat RA; Venteo L; Kushtagi P; Pluot M; Manfait M Anal Bioanal Chem; 2007 Mar; 387(5):1649-56. PubMed ID: 17043798 [TBL] [Abstract][Full Text] [Related]
19. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods. Depciuch J; Parlinska-Wojtan M J Pharm Biomed Anal; 2018 Feb; 150():80-86. PubMed ID: 29216589 [TBL] [Abstract][Full Text] [Related]
20. Study of normal colorectal tissue by FT-Raman spectroscopy. Andrade PO; Bitar RA; Yassoyama K; Martinho H; Santo AM; Bruno PM; Martin AA Anal Bioanal Chem; 2007 Mar; 387(5):1643-8. PubMed ID: 17031621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]