These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26903618)

  • 1. Convective flow reversal in self-powered enzyme micropumps.
    Ortiz-Rivera I; Shum H; Agrawal A; Sen A; Balazs AC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2585-90. PubMed ID: 26903618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-powered enzyme micropumps.
    Sengupta S; Patra D; Ortiz-Rivera I; Agrawal A; Shklyaev S; Dey KK; Córdova-Figueroa U; Mallouk TE; Sen A
    Nat Chem; 2014 May; 6(5):415-22. PubMed ID: 24755593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing surface-bound enzymatic reactions to organize microcapsules in solution.
    Shklyaev OE; Shum H; Sen A; Balazs AC
    Sci Adv; 2016 Mar; 2(3):e1501835. PubMed ID: 27034990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps.
    Valdez L; Shum H; Ortiz-Rivera I; Balazs AC; Sen A
    Soft Matter; 2017 Apr; 13(15):2800-2807. PubMed ID: 28345091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric and Scaling Effects in the Speed of Catalytic Enzyme Micropumps.
    Gao T; McNeill JM; Oliver VA; Xiao L; Mallouk TE
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39515-39523. PubMed ID: 35984896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powering Motion with Enzymes.
    Zhao X; Gentile K; Mohajerani F; Sen A
    Acc Chem Res; 2018 Oct; 51(10):2373-2381. PubMed ID: 30256612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered glucose-responsive micropumps.
    Zhang H; Duan W; Lu M; Zhao X; Shklyaev S; Liu L; Huang TJ; Sen A
    ACS Nano; 2014 Aug; 8(8):8537-42. PubMed ID: 25093759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic conductimetric bioreactor.
    Limbut W; Loyprasert S; Thammakhet C; Thavarungkul P; Tuantranont A; Asawatreratanakul P; Limsakul C; Wongkittisuksa B; Kanatharana P
    Biosens Bioelectron; 2007 Jun; 22(12):3064-71. PubMed ID: 17289366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing design of immobilized enzymatic microbioreactors using computational simulation.
    Bailey R; Jones F; Fisher B; Elmore B
    Appl Biochem Biotechnol; 2005; 121-124():639-52. PubMed ID: 15920269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
    Wang PJ; Chang CY; Chang ML
    Biosens Bioelectron; 2004 Jul; 20(1):115-21. PubMed ID: 15142583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchannels with Self-Pumping Walls.
    Yu T; Athanassiadis AG; Popescu MN; Chikkadi V; Güth A; Singh DP; Qiu T; Fischer P
    ACS Nano; 2020 Oct; 14(10):13673-13680. PubMed ID: 32946220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid actuation and buoyancy driven oscillation by enzyme-immobilized microfluidic microcapsules.
    Varshney R; Gill AK; Alam M; Agashe C; Patra D
    Lab Chip; 2021 Nov; 21(22):4352-4356. PubMed ID: 34664593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry pumps: a review of chemically powered micropumps.
    Zhou C; Zhang H; Li Z; Wang W
    Lab Chip; 2016 May; 16(10):1797-811. PubMed ID: 27102134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.
    Forrest SR; Elmore BB; Palmer JD
    Appl Biochem Biotechnol; 2005; 121-124():85-91. PubMed ID: 15917590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Chemical Pumps and Motors To Design Flows for Directed Particle Assembly.
    Shklyaev OE; Shum H; Balazs AC
    Acc Chem Res; 2018 Nov; 51(11):2672-2680. PubMed ID: 30346725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.