BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26903980)

  • 1. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding.
    Blancato VS; Pagliai FA; Magni C; Gonzalez CF; Lorca GL
    Front Microbiol; 2016; 7():101. PubMed ID: 26903980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO.
    Blancato VS; Repizo GD; Suárez CA; Magni C
    J Bacteriol; 2008 Nov; 190(22):7419-30. PubMed ID: 18805984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Functional Analyses of the Transcription Repressor DgoR From
    Lin Z; Sun Y; Liu Y; Tong S; Shang Z; Cai Y; Lin W
    Front Microbiol; 2020; 11():590330. PubMed ID: 33224125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.
    Martino GP; Quintana IM; Espariz M; Blancato VS; Magni C
    Int J Food Microbiol; 2016 Feb; 218():27-37. PubMed ID: 26594791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids.
    Banerjee S; Paul S; Nguyen LT; Chu BC; Vogel HJ
    Metallomics; 2016 Jan; 8(1):125-33. PubMed ID: 26600288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA.
    Gerharz T; Reinelt S; Kaspar S; Scapozza L; Bott M
    Biochemistry; 2003 May; 42(19):5917-24. PubMed ID: 12741850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor.
    Lacal J; García-Fontana C; Callejo-García C; Ramos JL; Krell T
    J Mol Recognit; 2011; 24(2):378-85. PubMed ID: 21360620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni(II) Sensing by RcnR Does Not Require an FrmR-Like Intersubunit Linkage.
    Huang HT; Maroney MJ
    Inorg Chem; 2019 Oct; 58(20):13639-13653. PubMed ID: 31247878
    [No Abstract]   [Full Text] [Related]  

  • 9. Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG.
    Bellucci M; Zambelli B; Musiani F; Turano P; Ciurli S
    Biochem J; 2009 Jul; 422(1):91-100. PubMed ID: 19476442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization and Me ion specificity of a Ca-citrate transporter from Enterococcus faecalis.
    Blancato VS; Magni C; Lolkema JS
    FEBS J; 2006 Nov; 273(22):5121-30. PubMed ID: 17042778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis.
    Wilder PT; Baldisseri DM; Udan R; Vallely KM; Weber DJ
    Biochemistry; 2003 Nov; 42(46):13410-21. PubMed ID: 14621986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation.
    Lord DM; Uzgoren Baran A; Soo VW; Wood TK; Peti W; Page R
    Biochemistry; 2014 Nov; 53(46):7223-31. PubMed ID: 25376905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Functional Characterization of the FadR Regulatory Protein from
    Gao R; Li D; Lin Y; Lin J; Xia X; Wang H; Bi L; Zhu J; Hassan B; Wang S; Feng Y
    Front Cell Infect Microbiol; 2017; 7():513. PubMed ID: 29312893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection.
    Martino GP; Perez CE; Magni C; Blancato VS
    PLoS One; 2018; 13(10):e0205787. PubMed ID: 30335810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus.
    Pagliai FA; Gonzalez CF; Lorca GL
    Front Microbiol; 2015; 6():1314. PubMed ID: 26635775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.
    Rangachari V; Marin V; Bienkiewicz EA; Semavina M; Guerrero L; Love JF; Murphy JR; Logan TM
    Biochemistry; 2005 Apr; 44(15):5672-82. PubMed ID: 15823025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR.
    Carr CE; Musiani F; Huang HT; Chivers PT; Ciurli S; Maroney MJ
    Inorg Chem; 2017 Jun; 56(11):6459-6476. PubMed ID: 28517938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-linked dimerization in the iron-dependent regulator from Mycobacterium tuberculosis.
    Semavina M; Beckett D; Logan TM
    Biochemistry; 2006 Oct; 45(41):12480-90. PubMed ID: 17029403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sensor kinase CitA (DpiB) of Escherichia coli functions as a high-affinity citrate receptor.
    Kaspar S; Bott M
    Arch Microbiol; 2002 Apr; 177(4):313-21. PubMed ID: 11889485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.