These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26904003)

  • 1. Genome Sequence Analysis of CsRV1: A Pathogenic Reovirus that Infects the Blue Crab Callinectes sapidus Across Its Trans-Hemispheric Range.
    Flowers EM; Bachvaroff TR; Warg JV; Neill JD; Killian ML; Vinagre AS; Brown S; Almeida AS; Schott EJ
    Front Microbiol; 2016; 7():126. PubMed ID: 26904003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalence of the pathogenic crustacean virus Callinectes sapidus reovirus 1 near flow-through blue crab aquaculture in Chesapeake Bay, USA.
    Flowers EM; Johnson AF; Aguilar R; Schott EJ
    Dis Aquat Organ; 2018 Jul; 129(2):135-144. PubMed ID: 29972374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR-based prevalence of a fatal reovirus of the blue crab, Callinectes sapidus (Rathbun) along the northern Atlantic coast of the USA.
    Flowers EM; Simmonds K; Messick GA; Sullivan L; Schott EJ
    J Fish Dis; 2016 Jun; 39(6):705-14. PubMed ID: 26249243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Hemispheric Genetic Diversity and Spatial Genetic Structure of
    Zhao M; Plough LV; Behringer DC; Bojko J; Kough AS; Alper NW; Xu L; Schott EJ
    Viruses; 2023 Feb; 15(2):. PubMed ID: 36851777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High prevalence of CsRV2 in cultured Callinectes danae: Potential impacts on soft-shell crab production in Brazil.
    Prestes Dos Santos Tavares C; Zhao M; Lopes Vogt É; Felipe Argenta Model J; Sommer Vinagre A; de Assis Teixeira da Silva U; Ostrensky A; James Schott E
    J Invertebr Pathol; 2022 May; 190():107739. PubMed ID: 35248555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating conspecific CsRV1 transmission in Callinectes sapidus.
    Lively JA; Spitznagel MI; Schott EJ; Small HJ
    J Invertebr Pathol; 2023 Nov; 201():107987. PubMed ID: 37634623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virus discovery in cultured portunid crabs: Genomic, phylogenetic, histopathological and microscopic characterization of a reovirus and a new bunyavirus.
    Tavares CPDS; Cibulski SP; Castilho-Westphal GG; Zhao M; Silva UAT; Schott EJ; Ostrensky A
    J Invertebr Pathol; 2024 Jun; 204():108118. PubMed ID: 38679369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Two Novel Toti-Like Viruses Co-infecting the Atlantic Blue Crab,
    Zhao M; Xu L; Bowers H; Schott EJ
    Front Microbiol; 2022; 13():855750. PubMed ID: 35369474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and partial characterization of a new reovirus in the Chinese mitten crab, Eriocheir sinensis H Milne Edwards.
    Zhang S; Bonami JR
    J Fish Dis; 2012 Oct; 35(10):733-9. PubMed ID: 22804822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Complete Sequence of a Highly Divergent Reovirus Genome Recovered from Callinectes sapidus.
    Zhao M; Flowers EM; Schott EJ
    Microbiol Resour Announc; 2021 Jan; 10(1):. PubMed ID: 33414308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does a blue crab putative insulin-like peptide binding protein (ILPBP) play a role in a virus infection?
    Huang X; Bae SH; Bachvaroff TR; Schott EJ; Ye H; Chung JS
    Fish Shellfish Immunol; 2016 Nov; 58():340-348. PubMed ID: 27664575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence analysis of 12 genome segments of mud crab reovirus (MCRV).
    Deng XX; Lü L; Ou YJ; Su HJ; Li G; Guo ZX; Zhang R; Zheng PR; Chen YG; He JG; Weng SP
    Virology; 2012 Jan; 422(2):185-94. PubMed ID: 22088215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical properties of double-stranded RNA used to discover a reo-like virus from blue crab Callinectes sapidus.
    Bowers HA; Messick GA; Hanif A; Jagus R; Carrion L; Zmora O; Schott EJ
    Dis Aquat Organ; 2010 Dec; 93(1):17-29. PubMed ID: 21290893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of variation within the barcode region of Cytochrome
    Windsor AM; Moore MK; Warner KA; Stadig SR; Deeds JR
    PeerJ; 2019; 7():e7827. PubMed ID: 31720100
    [No Abstract]   [Full Text] [Related]  

  • 15. Nucleotide sequences of four RNA segments of a reovirus isolated from the mud crab Scylla serrata provide evidence that this virus belongs to a new genus in the family Reoviridae.
    Chen J; Xiong J; Yang J; Mao Z; Chen X
    Arch Virol; 2011 Mar; 156(3):523-8. PubMed ID: 21153426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of alternate hosts in the ecology and life history of Hematodinium sp., a parasitic dinoflagellate of the blue crab (Callinectes sapidus).
    Lohan KM; Reece KS; Miller TL; Wheeler KN; Small HJ; Shields JD
    J Parasitol; 2012 Feb; 98(1):73-84. PubMed ID: 21812642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histopathological characterization and in situ detection of Callinectes sapidus reovirus.
    Tang KF; Messick GA; Pantoja CR; Redman RM; Lightner DV
    J Invertebr Pathol; 2011 Nov; 108(3):226-8. PubMed ID: 21925184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reovirus disease in cultured mud crab, Scylla serrata, in southern China.
    Weng SP; Guo ZX; Sun JJ; Chan SM; He JG
    J Fish Dis; 2007 Mar; 30(3):133-9. PubMed ID: 17352788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-level genome assembly of the blue crab, Callinectes sapidus.
    Bachvaroff TR; McDonald RC; Plough LV; Chung JS
    G3 (Bethesda); 2021 Sep; 11(9):. PubMed ID: 34544121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reovirus genomes from plant-feeding insects represent a newly discovered lineage within the family Reoviridae.
    Spear A; Sisterson MS; Stenger DC
    Virus Res; 2012 Feb; 163(2):503-11. PubMed ID: 22142476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.