These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26904152)

  • 1. Forward Stagewise Shrinkage and Addition for High Dimensional Censored Regression.
    Guo Z; Lu W; Li L
    Stat Biosci; 2015 Oct; 7(2):225-244. PubMed ID: 26904152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear variable selection with continuous outcome: a fully nonparametric incremental forward stagewise approach.
    Yu T
    Stat Anal Data Min; 2018 Aug; 11(4):188-197. PubMed ID: 30595785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.
    Staerk C; Mayr A
    BMC Bioinformatics; 2021 Sep; 22(1):441. PubMed ID: 34530737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible boosting of accelerated failure time models.
    Schmid M; Hothorn T
    BMC Bioinformatics; 2008 Jun; 9():269. PubMed ID: 18538026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Estimation and Variable Selection for Interval-Censored Data with Broken Adaptive Ridge Regression.
    Zhao H; Wu Q; Li G; Sun J
    J Am Stat Assoc; 2020; 115(529):204-216. PubMed ID: 32742044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection.
    Mayr A; Hofner B; Schmid M
    BMC Bioinformatics; 2016 Jul; 17():288. PubMed ID: 27444890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.
    Schmidtmann I; Elsäßer A; Weinmann A; Binder H
    Stat Med; 2014 Dec; 33(30):5358-70. PubMed ID: 25345575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stagewise generalized estimating equations with grouped variables.
    Vaughan G; Aseltine R; Chen K; Yan J
    Biometrics; 2017 Dec; 73(4):1332-1342. PubMed ID: 28192605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable selection for high-dimensional partly linear additive Cox model with application to Alzheimer's disease.
    Wu Q; Zhao H; Zhu L; Sun J
    Stat Med; 2020 Oct; 39(23):3120-3134. PubMed ID: 32652699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting method for nonlinear transformation models with censored survival data.
    Lu W; Li L
    Biostatistics; 2008 Oct; 9(4):658-67. PubMed ID: 18344565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable selection for censored data using Modified Correlation Adjusted coRrelation (MCAR) scores.
    Mimi A; Khan MHR
    Stat Med; 2021 Oct; 40(23):5046-5064. PubMed ID: 34155660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to Regularized Regression - A Comparison between Gradient Boosting and the Lasso.
    Hepp T; Schmid M; Gefeller O; Waldmann E; Mayr A
    Methods Inf Med; 2016 Oct; 55(5):422-430. PubMed ID: 27626931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data.
    Wang L; McMahan CS; Hudgens MG; Qureshi ZP
    Biometrics; 2016 Mar; 72(1):222-31. PubMed ID: 26393917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lasso method for variable selection in the Cox model.
    Tibshirani R
    Stat Med; 1997 Feb; 16(4):385-95. PubMed ID: 9044528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models.
    Binder H; Schumacher M
    BMC Bioinformatics; 2008 Jan; 9():14. PubMed ID: 18186927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings.
    Gilhodes J; Dalenc F; Gal J; Zemmour C; Leconte E; Boher JM; Filleron T
    Comput Math Methods Med; 2020; 2020():6795392. PubMed ID: 32670394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials.
    Ternès N; Rotolo F; Michiels S
    BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembling Variable Selectors by Stability Selection for the Cox Model.
    Yin QY; Li JL; Zhang CX
    Comput Intell Neurosci; 2017; 2017():2747431. PubMed ID: 29270195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
    Bastien P; Bertrand F; Meyer N; Maumy-Bertrand M
    Bioinformatics; 2015 Feb; 31(3):397-404. PubMed ID: 25286920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.