These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26905042)

  • 1. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.
    Moreira IP; Sasselli IR; Cannon DA; Hughes M; Lamprou DA; Tuttle T; Ulijn RV
    Soft Matter; 2016 Mar; 12(9):2623-31. PubMed ID: 26905042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable emulsions formed by self-assembly of interfacial networks of dipeptide derivatives.
    Bai S; Pappas C; Debnath S; Frederix PW; Leckie J; Fleming S; Ulijn RV
    ACS Nano; 2014 Jul; 8(7):7005-13. PubMed ID: 24896538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic Self-Assembly of Tripeptide Gels and Emulsions.
    Moreira IP; Piskorz TK; van Esch JH; Tuttle T; Ulijn RV
    Langmuir; 2017 May; 33(20):4986-4995. PubMed ID: 28463516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.
    Sasselli IR; Pappas CG; Matthews E; Wang T; Hunt NT; Ulijn RV; Tuttle T
    Soft Matter; 2016 Oct; 12(40):8307-8315. PubMed ID: 27722469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fmoc-Dipeptide/Porphyrin Molar Ratio Dictates Energy Transfer Efficiency in Nanostructures Produced by Biocatalytic Co-Assembly.
    Wijerathne NK; Kumar M; Ulijn RV
    Chemistry; 2019 Sep; 25(51):11847-11851. PubMed ID: 31353639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles.
    Hughes M; Debnath S; Knapp CW; Ulijn RV
    Biomater Sci; 2013 Nov; 1(11):1138-1142. PubMed ID: 32481936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic Self-Assembly Cascades.
    Sahoo JK; Pappas CG; Sasselli IR; Abul-Haija YM; Ulijn RV
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6828-6832. PubMed ID: 28488273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopropulsion by biocatalytic self-assembly.
    Leckie J; Hope A; Hughes M; Debnath S; Fleming S; Wark AW; Ulijn RV; Haw MD
    ACS Nano; 2014 Sep; 8(9):9580-9. PubMed ID: 25162764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release.
    Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T
    J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly and gelation properties of glycine/leucine Fmoc-dipeptides.
    Tang C; Ulijn RV; Saiani A
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):111. PubMed ID: 24085660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and computational studies reveal an alternative supramolecular structure for fmoc-dipeptide self-assembly.
    Mu X; Eckes KM; Nguyen MM; Suggs LJ; Ren P
    Biomacromolecules; 2012 Nov; 13(11):3562-71. PubMed ID: 23020140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene-appended dipeptides.
    Nalluri SK; Shivarova N; Kanibolotsky AL; Zelzer M; Gupta S; Frederix PW; Skabara PJ; Gleskova H; Ulijn RV
    Langmuir; 2014 Oct; 30(41):12429-37. PubMed ID: 25259412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive Seed Layer for Surface-Confined Self-Assembly of Peptides.
    Vigier-Carrière C; Garnier T; Wagner D; Lavalle P; Rabineau M; Hemmerlé J; Senger B; Schaaf P; Boulmedais F; Jierry L
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10198-201. PubMed ID: 26179465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly.
    Xu H; Das AK; Horie M; Shaik MS; Smith AM; Luo Y; Lu X; Collins R; Liem SY; Song A; Popelier PL; Turner ML; Xiao P; Kinloch IA; Ulijn RV
    Nanoscale; 2010 Jun; 2(6):960-6. PubMed ID: 20648293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent.
    Castelletto V; Cheng G; Greenland BW; Hamley IW; Harris PJ
    Langmuir; 2011 Mar; 27(6):2980-8. PubMed ID: 21338121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control.
    Wakabayashi R; Suehiro A; Goto M; Kamiya N
    Chem Commun (Camb); 2019 Jan; 55(5):640-643. PubMed ID: 30628590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytically triggered co-assembly of two-component core/shell nanofibers.
    Abul-Haija YM; Roy S; Frederix PW; Javid N; Jayawarna V; Ulijn RV
    Small; 2014 Mar; 10(5):973-9. PubMed ID: 24027125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.