These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26905367)

  • 1. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.
    Pan DB; Gao X; Feng X; Pan JT; Zhang H
    Sci Rep; 2016 Feb; 6():21876. PubMed ID: 26905367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of unpinning of spiral waves using circularly polarized electric fields in mathematical models of excitable media.
    Punacha S; A NK; Shajahan TK
    Phys Rev E; 2020 Sep; 102(3-1):032411. PubMed ID: 33076004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields.
    Feng X; Gao X; Pan DB; Li BW; Zhang H
    Sci Rep; 2014 Apr; 4():4831. PubMed ID: 24777360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media.
    Bittihn P; Squires A; Luther G; Bodenschatz E; Krinsky V; Parlitz U; Luther S
    Philos Trans A Math Phys Eng Sci; 2010 May; 368(1918):2221-36. PubMed ID: 20368243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpinning of scroll waves under the influence of a thermal gradient.
    Das NP; Mahanta D; Dutta S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022916. PubMed ID: 25215808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of spatial orientation and lifetime of scroll rings in excitable media.
    Vinson M; Mironov S; Mulvey S; Pertsov A
    Nature; 1997 Apr; 386(6624):477-80. PubMed ID: 9087404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous unpinning of multiple vortices in two-dimensional excitable media.
    Tom Wörden H; Parlitz U; Luther S
    Phys Rev E; 2019 Apr; 99(4-1):042216. PubMed ID: 31108599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of excitability on partially pinned scroll waves in excitable chemical media.
    Khaothong K; Osaklung J; Sutthiopad M; Luengviriya J; Showalter K; Luengviriya C
    Phys Rev E; 2023 Nov; 108(5-1):054201. PubMed ID: 38115415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twisted scroll wave dynamics: partially pinned waves in excitable chemical media.
    Porjai P; Sutthiopad M; Khaothong K; Phantu M; Kumchaiseemak N; Luengviriya J; Showalter K; Luengviriya C
    Phys Chem Chem Phys; 2019 Jan; 21(5):2419-2425. PubMed ID: 30649114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Termination of pinned vortices by high-frequency wave trains in heartlike excitable media with anisotropic fiber orientation.
    Hörning M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031912. PubMed ID: 23030949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue.
    Boccia E; Luther S; Parlitz U
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pinned scroll rings in an excitable system.
    Jiménez ZA; Marts B; Steinbock O
    Phys Rev Lett; 2009 Jun; 102(24):244101. PubMed ID: 19659009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scroll wave meandering induced by phase difference in a three-dimensional excitable medium.
    Yang Z; Gao S; Ouyang Q; Wang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056209. PubMed ID: 23214859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of the drift of scroll waves by optical feedback in cardiac tissue.
    Xia YX; Xie LH; He YJ; Pan JT; Panfilov AV; Zhang H
    Phys Rev E; 2023 Dec; 108(6-1):064406. PubMed ID: 38243456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling three-dimensional vortices using multiple and moving external fields.
    Das NP; Dutta S
    Phys Rev E; 2017 Aug; 96(2-1):022206. PubMed ID: 28950569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emitting waves from heterogeneity by a rotating electric field.
    Zhao YH; Lou Q; Chen JX; Sun WG; Ma J; Ying HP
    Chaos; 2013 Sep; 23(3):033141. PubMed ID: 24089977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave trains induced by circularly polarized electric fields in cardiac tissues.
    Feng X; Gao X; Tang JM; Pan JT; Zhang H
    Sci Rep; 2015 Aug; 5():13349. PubMed ID: 26302781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-excitability asymptotics for scroll waves in three-dimensional excitable media.
    Margerit D; Barkley D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036214. PubMed ID: 12366231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave-pinned filaments of scroll waves.
    Bánsági T; Meyer KJ; Steinbock O
    J Chem Phys; 2008 Mar; 128(9):094503. PubMed ID: 18331103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.