BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26905388)

  • 1. The Effect of Head Up Cardiopulmonary Resuscitation on Cerebral and Systemic Hemodynamics.
    Ryu HH; Moore JC; Yannopoulos D; Lick M; McKnite S; Shin SD; Kim TY; Metzger A; Rees J; Tsangaris A; Debaty G; Lurie KG
    Resuscitation; 2016 May; 102():29-34. PubMed ID: 26905388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head and thorax elevation during active compression decompression cardiopulmonary resuscitation with an impedance threshold device improves cerebral perfusion in a swine model of prolonged cardiac arrest.
    Moore JC; Segal N; Lick MC; Dodd KW; Salverda BJ; Hinke MB; Robinson AE; Debaty G; Lurie KG
    Resuscitation; 2017 Dec; 121():195-200. PubMed ID: 28827197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent head up cardiopulmonary resuscitation haemodynamics are observed across porcine and human cadaver translational models.
    Moore JC; Holley J; Segal N; Lick MC; Labarère J; Frascone RJ; Dodd KW; Robinson AE; Lick C; Klein L; Ashton A; McArthur A; Tsangaris A; Makaretz A; Makaretz M; Debaty G; Pepe PE; Lurie KG
    Resuscitation; 2018 Nov; 132():133-139. PubMed ID: 29702188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled progressive elevation rather than an optimal angle maximizes cerebral perfusion pressure during head up CPR in a swine model of cardiac arrest.
    Moore JC; Salverda B; Lick M; Rojas-Salvador C; Segal N; Debaty G; Lurie KG
    Resuscitation; 2020 May; 150():23-28. PubMed ID: 32114071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving post-cardiac arrest cerebral perfusion pressure by elevating the head and thorax.
    Duhem H; Moore JC; Rojas-Salvador C; Salverda B; Lick M; Pepe P; Labarere J; Debaty G; Lurie KG
    Resuscitation; 2021 Feb; 159():45-53. PubMed ID: 33385469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of head-up vs. supine CPR on cerebral oxygenation and cerebral metabolism - a prospective, randomized porcine study.
    Putzer G; Braun P; Martini J; Niederstätter I; Abram J; Lindner AK; Neururer S; Mulino M; Glodny B; Helbok R; Mair P
    Resuscitation; 2018 Jul; 128():51-55. PubMed ID: 29727706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled sequential elevation of the head and thorax combined with active compression decompression cardiopulmonary resuscitation and an impedance threshold device improves neurological survival in a porcine model of cardiac arrest.
    Moore JC; Salverda B; Rojas-Salvador C; Lick M; Debaty G; G Lurie K
    Resuscitation; 2021 Jan; 158():220-227. PubMed ID: 33027619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tilting for perfusion: head-up position during cardiopulmonary resuscitation improves brain flow in a porcine model of cardiac arrest.
    Debaty G; Shin SD; Metzger A; Kim T; Ryu HH; Rees J; McKnite S; Matsuura T; Lick M; Yannopoulos D; Lurie K
    Resuscitation; 2015 Feb; 87():38-43. PubMed ID: 25447353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest.
    Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG
    J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG
    Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral hemodynamic effects of head-up CPR in a porcine model.
    Jaeger D; Kosmopoulos M; Voicu S; Kalra R; Gaisendrees C; Schlartenberger G; Bartos JA; Yannopoulos D
    Resuscitation; 2023 Dec; 193():110039. PubMed ID: 37935278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of controlled sequential elevation timing of the head and thorax during cardiopulmonary resuscitation on cerebral perfusion pressures in a porcine model of cardiac arrest.
    Rojas-Salvador C; Moore JC; Salverda B; Lick M; Debaty G; Lurie KG
    Resuscitation; 2020 Apr; 149():162-169. PubMed ID: 31972229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest.
    Debaty G; Metzger A; Rees J; McKnite S; Puertas L; Yannopoulos D; Lurie K
    Crit Care Med; 2015 May; 43(5):1087-95. PubMed ID: 25756411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs.
    Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW
    Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic improvement of a LUCAS 2 automated device by addition of an impedance threshold device in a pig model of cardiac arrest.
    Debaty G; Segal N; Matsuura T; Fahey B; Wayne M; Mahoney B; Frascone R; Lick C; Yannopoulos D
    Resuscitation; 2014 Dec; 85(12):1704-7. PubMed ID: 25263510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest.
    Debaty G; Lurie K; Metzger A; Lick M; Bartos JA; Rees JN; McKnite S; Puertas L; Pepe P; Fowler R; Yannopoulos D
    Resuscitation; 2016 Aug; 105():29-35. PubMed ID: 27211835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Boussignac Cardiac arrest device (B-card) during cardiopulmonary resuscitation in an animal model.
    Moore JC; Lamhaut L; Hutin A; Dodd KW; Robinson AE; Lick MC; Salverda BJ; Hinke MB; Labarere J; Debaty G; Segal N
    Resuscitation; 2017 Oct; 119():81-88. PubMed ID: 28800887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure.
    Metzger AK; Herman M; McKnite S; Tang W; Yannopoulos D
    Crit Care Med; 2012 Jun; 40(6):1851-6. PubMed ID: 22487997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve.
    Lurie KG; Coffeen P; Shultz J; McKnite S; Detloff B; Mulligan K
    Circulation; 1995 Mar; 91(6):1629-32. PubMed ID: 7882467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.