These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 26905979)
1. Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets. Cole M; Lindeque PK; Fileman E; Clark J; Lewis C; Halsband C; Galloway TS Environ Sci Technol; 2016 Mar; 50(6):3239-46. PubMed ID: 26905979 [TBL] [Abstract][Full Text] [Related]
2. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Coppock RL; Galloway TS; Cole M; Fileman ES; Queirós AM; Lindeque PK Sci Total Environ; 2019 Oct; 687():780-789. PubMed ID: 31412481 [TBL] [Abstract][Full Text] [Related]
4. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Cole M; Lindeque P; Fileman E; Halsband C; Galloway TS Environ Sci Technol; 2015 Jan; 49(2):1130-7. PubMed ID: 25563688 [TBL] [Abstract][Full Text] [Related]
5. Microplastic Ingestion by Gelatinous Zooplankton May Lower Efficiency of the Biological Pump. Wieczorek AM; Croot PL; Lombard F; Sheahan JN; Doyle TK Environ Sci Technol; 2019 May; 53(9):5387-5395. PubMed ID: 30932485 [TBL] [Abstract][Full Text] [Related]
6. Aging of microplastics promotes their ingestion by marine zooplankton. Vroom RJE; Koelmans AA; Besseling E; Halsband C Environ Pollut; 2017 Dec; 231(Pt 1):987-996. PubMed ID: 28898955 [TBL] [Abstract][Full Text] [Related]
7. Microplastics reduce net population growth and fecal pellet sinking rates for the marine copepod, Acartia tonsa. Shore EA; deMayo JA; Pespeni MH Environ Pollut; 2021 Sep; 284():117379. PubMed ID: 34091258 [TBL] [Abstract][Full Text] [Related]
8. The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica, and its impact on its feeding behavior and intestinal histology. Wang Y; Mao Z; Zhang M; Ding G; Sun J; Du M; Liu Q; Cong Y; Jin F; Zhang W; Wang J Chemosphere; 2019 Nov; 234():123-131. PubMed ID: 31207418 [TBL] [Abstract][Full Text] [Related]
9. Suspended microplastics in a highly polluted bay: Abundance, size, and availability for mesozooplankton. Figueiredo GM; Vianna TMP Mar Pollut Bull; 2018 Oct; 135():256-265. PubMed ID: 30301037 [TBL] [Abstract][Full Text] [Related]
10. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Jang M; Shim WJ; Han GM; Song YK; Hong SH Mar Pollut Bull; 2018 Jun; 131(Pt A):365-369. PubMed ID: 29886959 [TBL] [Abstract][Full Text] [Related]
11. Ingestion and impact of microplastics on arctic Calanus copepods. Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089 [TBL] [Abstract][Full Text] [Related]
12. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Desforges JP; Galbraith M; Ross PS Arch Environ Contam Toxicol; 2015 Oct; 69(3):320-30. PubMed ID: 26066061 [TBL] [Abstract][Full Text] [Related]
13. Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles. Frangoulis C; Christou ED; Hecq JH Adv Mar Biol; 2005; 47():253-309. PubMed ID: 15596169 [TBL] [Abstract][Full Text] [Related]
14. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea. Katija K; Choy CA; Sherlock RE; Sherman AD; Robison BH Sci Adv; 2017 Aug; 3(8):e1700715. PubMed ID: 28835922 [TBL] [Abstract][Full Text] [Related]
15. Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico. Di Mauro R; Kupchik MJ; Benfield MC Environ Pollut; 2017 Nov; 230():798-809. PubMed ID: 28734261 [TBL] [Abstract][Full Text] [Related]
16. Smells good enough to eat: Dimethyl sulfide (DMS) enhances copepod ingestion of microplastics. Procter J; Hopkins FE; Fileman ES; Lindeque PK Mar Pollut Bull; 2019 Jan; 138():1-6. PubMed ID: 30660250 [TBL] [Abstract][Full Text] [Related]
17. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Botterell ZLR; Bergmann M; Hildebrandt N; Krumpen T; Steinke M; Thompson RC; Lindeque PK Sci Total Environ; 2022 Jul; 831():154886. PubMed ID: 35364160 [TBL] [Abstract][Full Text] [Related]
18. Filter feeders are key to small microplastic residence times in stratified lakes: A virtual experiment. Gilfedder BS; Elagami H; Boos JP; Brehm J; Schott M; Witt L; Laforsch C; Frei S Sci Total Environ; 2023 Sep; 890():164293. PubMed ID: 37216983 [TBL] [Abstract][Full Text] [Related]
19. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Foley CJ; Feiner ZS; Malinich TD; Höök TO Sci Total Environ; 2018 Aug; 631-632():550-559. PubMed ID: 29529442 [TBL] [Abstract][Full Text] [Related]
20. Isolation of microplastics in biota-rich seawater samples and marine organisms. Cole M; Webb H; Lindeque PK; Fileman ES; Halsband C; Galloway TS Sci Rep; 2014 Mar; 4():4528. PubMed ID: 24681661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]