These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 26906000)
1. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces. L'Hermite D; Vors E; Vercouter T; Moutiers G Environ Sci Pollut Res Int; 2016 May; 23(9):8219-26. PubMed ID: 26906000 [TBL] [Abstract][Full Text] [Related]
2. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
3. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator. Nagashima H; Kondo T; Nagoya T; Ikeda T; Kurimata N; Unoke S; Seto Y J Chromatogr A; 2015 Aug; 1406():279-90. PubMed ID: 26118803 [TBL] [Abstract][Full Text] [Related]
4. Sampling and analyses of surfaces contaminated with chemical warfare agents by using a newly developed triple layered composite wipe. Imran M; Kumar N; Thakare VB; Gupta AK; Acharya J; Garg P Anal Bioanal Chem; 2020 Feb; 412(5):1097-1110. PubMed ID: 31907592 [TBL] [Abstract][Full Text] [Related]
5. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air. Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802 [TBL] [Abstract][Full Text] [Related]
6. Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry. Cordell RL; Willis KA; Wyche KP; Blake RS; Ellis AM; Monks PS Anal Chem; 2007 Nov; 79(21):8359-66. PubMed ID: 17894471 [TBL] [Abstract][Full Text] [Related]
7. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study. Kelly JT; Qualley A; Hughes GT; Rubenstein MH; Malloy TA; Piatkowski T J Chromatogr A; 2021 Jan; 1636():461784. PubMed ID: 33360649 [TBL] [Abstract][Full Text] [Related]
8. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents. Graichen AM; Vachet RW J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782 [TBL] [Abstract][Full Text] [Related]
9. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM. Mizrahi DM; Saphier S; Columbus I J Hazard Mater; 2010 Jul; 179(1-3):495-9. PubMed ID: 20363072 [TBL] [Abstract][Full Text] [Related]
10. Deploying Portable Gas Chromatography-Mass Spectrometry (GC-MS) to Military Users for the Identification of Toxic Chemical Agents in Theater. Leary PE; Kammrath BW; Lattman KJ; Beals GL Appl Spectrosc; 2019 Aug; 73(8):841-858. PubMed ID: 31008649 [TBL] [Abstract][Full Text] [Related]
11. Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy. Gottfried JL; De Lucia FC; Munson CA; Miziolek AW Appl Spectrosc; 2008 Apr; 62(4):353-63. PubMed ID: 18416891 [TBL] [Abstract][Full Text] [Related]
12. Determination of mustard and lewisite related compounds in abandoned chemical weapons (Yellow shells) from sources in China and Japan. Hanaoka S; Nomura K; Wada T J Chromatogr A; 2006 Jan; 1101(1-2):268-77. PubMed ID: 16269149 [TBL] [Abstract][Full Text] [Related]
13. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions. Osovsky R; Kaplan D; Nir I; Rotter H; Elisha S; Columbus I Environ Sci Technol; 2014 Sep; 48(18):10912-8. PubMed ID: 25133545 [TBL] [Abstract][Full Text] [Related]
14. μ-PADs for detection of chemical warfare agents. Pardasani D; Tak V; Purohit AK; Dubey DK Analyst; 2012 Dec; 137(23):5648-53. PubMed ID: 23086107 [TBL] [Abstract][Full Text] [Related]
15. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization. Ahrens A; Allers M; Bock H; Hitzemann M; Ficks A; Zimmermann S Anal Chem; 2022 Nov; 94(44):15440-15447. PubMed ID: 36301910 [TBL] [Abstract][Full Text] [Related]
16. Surface-enhanced Raman spectroscopy of half-mustard agent. Stuart DA; Biggs KB; Van Duyne RP Analyst; 2006 Apr; 131(4):568-72. PubMed ID: 16568174 [TBL] [Abstract][Full Text] [Related]
17. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Arduini F; Amine A; Moscone D; Ricci F; Palleschi G Anal Bioanal Chem; 2007 Jul; 388(5-6):1049-57. PubMed ID: 17508205 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Molecular Markers and Analytical Methods Documenting the Occurrence of Mustard Gas and Arsenical Warfare Agents in Soil. Sassolini A; Brinchi G; Di Gennaro A; Dionisi S; Dominici C; Fantozzi L; Onofri G; Piazza R; Guidotti M Bull Environ Contam Toxicol; 2016 Sep; 97(3):432-8. PubMed ID: 27385368 [TBL] [Abstract][Full Text] [Related]
20. Dynamic solid phase microextraction for sampling of airborne sarin with gas chromatography-mass spectrometry for rapid field detection and quantification. Hook GL; Jackson Lepage C; Miller SI; Smith PA J Sep Sci; 2004 Aug; 27(12):1017-22. PubMed ID: 15352721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]