These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 26906000)
21. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. Black RM; Clarke RJ; Read RW; Reid MT J Chromatogr A; 1994 Feb; 662(2):301-21. PubMed ID: 8143028 [TBL] [Abstract][Full Text] [Related]
22. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583 [TBL] [Abstract][Full Text] [Related]
23. Fate of chemical warfare agents and toxic industrial chemicals in landfills. Bartelt-Hunt SL; Barlaz MA; Knappe DR; Kjeldsen P Environ Sci Technol; 2006 Jul; 40(13):4219-25. PubMed ID: 16856738 [TBL] [Abstract][Full Text] [Related]
24. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Climent E; Biyikal M; Gawlitza K; Dropa T; Urban M; Costero AM; Martínez-Máñez R; Rurack K Chemistry; 2016 Aug; 22(32):11138-42. PubMed ID: 27124609 [TBL] [Abstract][Full Text] [Related]
25. Human health risk screening due to consumption of fish contaminated with chemical warfare agents in the Baltic Sea. Sanderson H; Fauser P; Thomsen M; Sørensen PB J Hazard Mater; 2009 Feb; 162(1):416-22. PubMed ID: 18573611 [TBL] [Abstract][Full Text] [Related]
26. Ultrasensitive detection of trace chemical warfare agent-related compounds by thermal desorption associative ionization time-of-flight mass spectrometry. Huang J; Shu J; Yang B; Guo Y; Zhang Z; Jiang K; Li Z Talanta; 2021 Dec; 235():122788. PubMed ID: 34517646 [TBL] [Abstract][Full Text] [Related]
27. Sub-parts-per-billion level detection of dimethyl methyl phosphonate (DMMP) by quantum cascade laser photoacoustic spectroscopy. Mukherjee A; Dunayevskiy I; Prasanna M; Go R; Tsekoun A; Wang X; Fan J; Patel CK Appl Opt; 2008 Apr; 47(10):1543-8. PubMed ID: 18382583 [TBL] [Abstract][Full Text] [Related]
28. Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents. Maziejuk M; Puton J; Szyposzyńska M; Witkiewicz Z Talanta; 2015 Nov; 144():1201-6. PubMed ID: 26452948 [TBL] [Abstract][Full Text] [Related]
29. Decontamination of mustard sulfur and VX by sodium percarbonate complexed with 1-acetylguanidine as a novel activator. Qi L; Xiao B; Kong L; Xu Y; Yang J; Zuo G Water Sci Technol; 2023 Jan; 87(1):336-346. PubMed ID: 36640041 [TBL] [Abstract][Full Text] [Related]
30. In situ determination of nerve agents in various matrices by portable capillary electropherograph with contactless conductivity detection. Kubáň P; Seiman A; Makarõtševa N; Vaher M; Kaljurand M J Chromatogr A; 2011 May; 1218(18):2618-25. PubMed ID: 21450295 [TBL] [Abstract][Full Text] [Related]
31. Surface-immobilization of molecules for detection of chemical warfare agents. Bhowmick I; Neelam Analyst; 2014 Sep; 139(17):4154-68. PubMed ID: 24998209 [TBL] [Abstract][Full Text] [Related]
32. Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers. Matatagui D; Fernández MJ; Fontecha J; Sayago I; Gràcia I; Cané C; Horrillo MC; Santos JP Talanta; 2014 Mar; 120():408-12. PubMed ID: 24468389 [TBL] [Abstract][Full Text] [Related]
33. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate. Spiandore M; Piram A; Lacoste A; Josse D; Doumenq P Drug Test Anal; 2014 Jun; 6 Suppl 1():67-73. PubMed ID: 24817050 [TBL] [Abstract][Full Text] [Related]
34. Non-contact detection of chemical warfare simulant triethyl phosphate using PM-IRRAS. Kycia AH; Vezvaie M; Zamlynny V; Lipkowski J; Petryk MW Anal Chim Acta; 2012 Aug; 737():45-54. PubMed ID: 22769035 [TBL] [Abstract][Full Text] [Related]
35. Fluorescent probes for the detection of chemical warfare agents. Meng WQ; Sedgwick AC; Kwon N; Sun M; Xiao K; He XP; Anslyn EV; James TD; Yoon J Chem Soc Rev; 2023 Jan; 52(2):601-662. PubMed ID: 36149439 [TBL] [Abstract][Full Text] [Related]
36. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. Love AH; Bailey CG; Hanna ML; Hok S; Vu AK; Reutter DJ; Raber E J Hazard Mater; 2011 Nov; 196():115-22. PubMed ID: 21944706 [TBL] [Abstract][Full Text] [Related]
37. Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers. Loui A; Ratto TV; Wilson TS; McCall SK; Mukerjee EV; Love AH; Hart BR Analyst; 2008 May; 133(5):608-15. PubMed ID: 18427681 [TBL] [Abstract][Full Text] [Related]
38. Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. Czub M; Nawała J; Popiel S; Dziedzic D; Brzeziński T; Maszczyk P; Sanderson H; Fabisiak J; Bełdowski J; Kotwicki L Mar Environ Res; 2020 Oct; 161():105077. PubMed ID: 32853855 [TBL] [Abstract][Full Text] [Related]
39. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas. Ringer JM Eur J Mass Spectrom (Chichester); 2013; 19(3):175-85. PubMed ID: 24308198 [TBL] [Abstract][Full Text] [Related]
40. Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer. Cuñat J; Fortes FJ; Laserna JJ Anal Chim Acta; 2009 Feb; 633(1):38-42. PubMed ID: 19110113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]