These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 26906000)
61. Chemodosimeter for Selective and Sensitive Chromogenic and Fluorogenic Detection of Mustard Gas for Real Time Analysis. Kumar V; Rana H; Raviraju G; Gupta AK Anal Chem; 2018 Jan; 90(2):1417-1422. PubMed ID: 29300079 [TBL] [Abstract][Full Text] [Related]
62. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents. Iwai T; Kakegawa K; Aida M; Nagashima H; Nagoya T; Kanamori-Kataoka M; Miyahara H; Seto Y; Okino A Anal Chem; 2015 Jun; 87(11):5707-15. PubMed ID: 25958918 [TBL] [Abstract][Full Text] [Related]
63. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207 [TBL] [Abstract][Full Text] [Related]
64. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593 [TBL] [Abstract][Full Text] [Related]
65. Near real time detection of hazardous airborne substances. Leppert J; Horner G; Rietz F; Ringer J; Schulze Lammers P; Boeker P Talanta; 2012 Nov; 101():440-6. PubMed ID: 23158346 [TBL] [Abstract][Full Text] [Related]
66. Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples. Golime R; Chandra B; Palit M; Dubey DK Arch Toxicol; 2019 Jun; 93(6):1473-1484. PubMed ID: 30923868 [TBL] [Abstract][Full Text] [Related]
67. Development of a Rapid and Accurate Vapor Generation System for Real-Time Monitoring of a Chemical Warfare Agent (CWA) by Coupling Fourier Transform Infrared (FT-IR) Spectroscopy. Seo HS; Koh YJ; Nam H; Kim JS ACS Omega; 2023 May; 8(20):18058-18063. PubMed ID: 37251177 [TBL] [Abstract][Full Text] [Related]
68. Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation. Kondo T; Hashimoto R; Ohrui Y; Sekioka R; Nogami T; Muta F; Seto Y Forensic Sci Int; 2018 Oct; 291():23-38. PubMed ID: 30125768 [TBL] [Abstract][Full Text] [Related]
69. Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste. Solo-Gabriele HM; Townsend TG; Hahn DW; Moskal TM; Hosein N; Jambeck J; Jacobi G Waste Manag; 2004; 24(4):413-24. PubMed ID: 15081070 [TBL] [Abstract][Full Text] [Related]
70. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. D'Agostino PA; Chenier CL Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1617-24. PubMed ID: 20486257 [TBL] [Abstract][Full Text] [Related]
71. Homogeneously niobium-doped MoS Jiang H; Wang H; Shangguan Y; Chen J; Liang T Front Chem; 2022; 10():1011471. PubMed ID: 36171997 [TBL] [Abstract][Full Text] [Related]
72. Laser-based sensor for detection of hazardous gases in the air using waveguide CO2 laser. Gondal MA; Bakhtiari IA; Dastageer AK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):871-8. PubMed ID: 17558767 [TBL] [Abstract][Full Text] [Related]
73. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates. Gottfried JL Anal Bioanal Chem; 2011 Jul; 400(10):3289-301. PubMed ID: 21331489 [TBL] [Abstract][Full Text] [Related]
74. Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete. Mizrahi DM; Goldvaser M; Columbus I Environ Sci Technol; 2011 Apr; 45(8):3466-72. PubMed ID: 21438603 [TBL] [Abstract][Full Text] [Related]
75. Development of an analytical methodology for sarin (GB) and soman (GD) in various military-related wastes. O'Neill HJ; Brubaker KL; Schneider JF; Sytsma LF; Kimmell TA J Chromatogr A; 2002 Jul; 962(1-2):183-95. PubMed ID: 12198962 [TBL] [Abstract][Full Text] [Related]
76. Quantitation of metabolites of the nerve agents sarin, soman, cyclohexylsarin, VX, and Russian VX in human urine using isotope-dilution gas chromatography-tandem mass spectrometry. Barr JR; Driskell WJ; Aston LS; Martinez RA J Anal Toxicol; 2004; 28(5):372-8. PubMed ID: 15239858 [TBL] [Abstract][Full Text] [Related]
77. Facile hydrolysis-based chemical destruction of the warfare agents VX, GB, and HD by alumina-supported fluoride reagents. Gershonov E; Columbus I; Zafrani Y J Org Chem; 2009 Jan; 74(1):329-38. PubMed ID: 19053582 [TBL] [Abstract][Full Text] [Related]
78. Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers. Nicolodelli G; Senesi GS; de Oliveira Perazzoli IL; Marangoni BS; De Melo Benites V; Milori DMBP Sci Total Environ; 2016 Sep; 565():1116-1123. PubMed ID: 27261426 [TBL] [Abstract][Full Text] [Related]
79. Pretreatment method for hypochlorite decon water before GC analysis of HD, VX, and GD. Xu M; Wang L; Zhu H; Zhang H; Liang J; Wang X; Cheng Z; Zhu Y Water Sci Technol; 2021 Mar; 83(5):985-992. PubMed ID: 33724930 [TBL] [Abstract][Full Text] [Related]
80. Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water. Dubey DK; Pardasani D; Gupta AK; Palit M; Kanaujia PK; Tak V J Chromatogr A; 2006 Feb; 1107(1-2):29-35. PubMed ID: 16427062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]