BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26906159)

  • 1. Human Vision-Motivated Algorithm Allows Consistent Retinal Vessel Classification Based on Local Color Contrast for Advancing General Diagnostic Exams.
    Ivanov IV; Leitritz MA; Norrenberg LA; Völker M; Dynowski M; Ueffing M; Dietter J
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):731-8. PubMed ID: 26906159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated characterization of blood vessels as arteries and veins in retinal images.
    Mirsharif Q; Tajeripour F; Pourreza H
    Comput Med Imaging Graph; 2013; 37(7-8):607-17. PubMed ID: 23849699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic graph-based approach for artery/vein classification in retinal images.
    Dashtbozorg B; Mendonça AM; Campilho A
    IEEE Trans Image Process; 2014 Mar; 23(3):1073-83. PubMed ID: 23693131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.
    Schuster AK; Fischer JE; Vossmerbaeumer U
    Acta Ophthalmol; 2014 Feb; 92(1):e42-9. PubMed ID: 23879386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color Fundus Image Guided Artery-Vein Differentiation in Optical Coherence Tomography Angiography.
    Alam M; Toslak D; Lim JI; Yao X
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4953-4962. PubMed ID: 30326063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable monitoring system for arteriovenous ratio computation.
    Vázquez SG; Barreira N; Penedo MG; Rodríguez-Blanco M
    Comput Med Imaging Graph; 2013; 37(5-6):337-45. PubMed ID: 24183660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved arteriovenous classification method for the early diagnostics of various diseases in retinal image.
    Xu X; Ding W; Abràmoff MD; Cao R
    Comput Methods Programs Biomed; 2017 Apr; 141():3-9. PubMed ID: 28241966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
    Muramatsu C; Hatanaka Y; Iwase T; Hara T; Fujita H
    Comput Med Imaging Graph; 2011 Sep; 35(6):472-80. PubMed ID: 21489750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal artery-vein caliber grading using color fundus imaging.
    Bhuiyan A; Kawasaki R; Lamoureux E; Ramamohanarao K; Wong TY
    Comput Methods Programs Biomed; 2013 Jul; 111(1):104-14. PubMed ID: 23535181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethnic variability in retinal vessel caliber: a potential source of measurement error from ocular pigmentation?--the Sydney Childhood Eye Study.
    Rochtchina E; Wang JJ; Taylor B; Wong TY; Mitchell P
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1362-6. PubMed ID: 18385051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved system for the automatic estimation of the Arteriolar-to-Venular diameter Ratio (AVR) in retinal images.
    Tramontan L; Grisan E; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3550-3. PubMed ID: 19163475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of two non-mydriatic fundus cameras to obtain retinal arterio-venous ratio.
    Jürgens C; Ittermann T; Völzke H; Tost F
    Ophthalmic Epidemiol; 2014 Oct; 21(5):333-8. PubMed ID: 25119116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal Artery-Vein Classification via Topology Estimation.
    Estrada R; Allingham MJ; Mettu PS; Cousins SW; Tomasi C; Farsiu S
    IEEE Trans Med Imaging; 2015 Dec; 34(12):2518-34. PubMed ID: 26068204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Automated measurement of retinal vascular diameter].
    Vilser W; Klein S; Wulff P; Siegel C; Fuchs G
    Fortschr Ophthalmol; 1991; 88(5):482-6. PubMed ID: 1757037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Multifractal characterisation of human retinal blood vessels].
    Tălu S
    Oftalmologia; 2012; 56(2):63-71. PubMed ID: 23424766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automatic system for the estimation of generalized arteriolar narrowing in retinal images.
    Ruggeri A; Grisan E; De Luca M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6464-7. PubMed ID: 18003505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal Artery and Vein Classification for Automatic Vessel Caliber Grading.
    Bhuiyan A; Hussain MA; Wong TY; Klein R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():870-873. PubMed ID: 30440529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of retinal vessel calibre measurements using a retinal oximeter.
    Heitmar R; Kalitzeos AA
    BMC Ophthalmol; 2015 Dec; 15():184. PubMed ID: 26705024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.
    Jonas JB; Wang N; Wang S; Wang YX; You QS; Yang D; Wei WB; Xu L
    Am J Hypertens; 2014 Sep; 27(9):1170-8. PubMed ID: 24632393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.