These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26906360)

  • 1. Low-power variable optical attenuator based on a hybrid SiON-polymer S-bend waveguide.
    Wang L; Song Q; Wu J; Chen K
    Appl Opt; 2016 Feb; 55(5):969-73. PubMed ID: 26906360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-power total internal reflection thermo-optic switch based on hybrid SiON-polymer X-junction waveguides.
    Song QQ; Chen KX; Wang LF; Guo JQ; Chen S; Zheng TX
    Appl Opt; 2018 Nov; 57(33):9809-9813. PubMed ID: 30462015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable optical attenuator using thermo-optic two-mode interference device with fast response time.
    Sahu PP
    Appl Opt; 2009 Jul; 48(21):4213-8. PubMed ID: 19623235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar waveguide-based silica-polymer hybrid variable optical attenuator and its associated polymers.
    Zhang Z; Xiao GZ; Zhao P; Grover CP
    Appl Opt; 2005 Apr; 44(12):2402-8. PubMed ID: 15861849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low consumption power variable optical attenuator with sol-gel derived organic/inorganic hybrid materials.
    Li D; Zhang Y; Liu L; Xu L
    Opt Express; 2006 Jun; 14(13):6029-34. PubMed ID: 19516774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer/Silica Hybrid Waveguide Thermo-Optic VOA Covering O-Band.
    Yin Y; Yao M; Ding Y; Xu X; Li Y; Wu Y; Zhang D
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable optical attenuator based on photonic crystal waveguide with low-group-index tapers.
    Zhao Q; Cui K; Feng X; Liu F; Zhang W; Huang Y
    Appl Opt; 2013 Sep; 52(25):6245-9. PubMed ID: 24085083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-power-consumption polymer Mach-Zehnder interferometer thermo-optic switch at 532  nm based on a triangular waveguide.
    Lin B; Wang X; Lv J; Cao Y; Yang Y; Zhang Y; Zhang A; Yi Y; Wang F; Zhang D
    Opt Lett; 2020 Aug; 45(16):4448-4451. PubMed ID: 32796980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides.
    Tang J; Liu YR; Zhang LJ; Fu XC; Xue XM; Qian G; Zhao N; Zhang T
    Micromachines (Basel); 2018 Jul; 9(8):. PubMed ID: 30424302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorinated photopolymer waveguide thermo-optic switches with loss-compensation function based on erbium-containing cladding structure.
    Zheng Y; Chen C; Wang J; Shi Z; Cai Z; Sun X; Wang F; Cui Z; Zhang D
    Phys Chem Chem Phys; 2016 Sep; 18(36):25553-25559. PubMed ID: 27711463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-metal-printed thermo-optic waveguide switches based on low-loss fluorinated polycarbonate materials.
    Wang C; Zhang D; Zhang X; Ding S; Wang J; Cheng R; Wang F; Cui Z; Chen C
    Opt Express; 2020 Jul; 28(14):20773-20784. PubMed ID: 32680130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of straight and compact S-bend optical waveguides on a silicon-on-insulator platform.
    Navalakhe RK; DasGupta N; Das BK
    Appl Opt; 2009 Nov; 48(31):G125-30. PubMed ID: 19881633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer.
    Niu X; Zheng Y; Gu Y; Chen C; Cai Z; Shi Z; Wang F; Sun X; Cui Z; Zhang D
    Appl Opt; 2014 Oct; 53(29):6698-705. PubMed ID: 25322371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-printing polymer waveguide thermo-optic switches compatible with 650 and 532  nm visible signal wavelengths for plastic optical fiber systems.
    Wang C; Zhang D; Zhang X; Wang J; Cheng R; Wang X; Yi Y; Sun X; Wang F; Chen C
    Appl Opt; 2019 Sep; 58(25):6820-6826. PubMed ID: 31503648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate.
    Zuo X; Sun Z
    Opt Lett; 2011 Aug; 36(15):2946-8. PubMed ID: 21808367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material.
    Jia L; Song J; Liow TY; Luo X; Tu X; Fang Q; Koh SC; Yu M; Lo G
    Opt Express; 2014 Sep; 22(19):23652-60. PubMed ID: 25321831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon photonic dynamic optical channel leveler with external feedback loop.
    Doylend JK; Jessop PE; Knights AP
    Opt Express; 2010 Jun; 18(13):13805-12. PubMed ID: 20588513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient, compact and low loss thermo-optic phase shifter in silicon.
    Harris NC; Ma Y; Mower J; Baehr-Jones T; Englund D; Hochberg M; Galland C
    Opt Express; 2014 May; 22(9):10487-93. PubMed ID: 24921750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit.
    Chen C; Niu X; Han C; Shi Z; Wang X; Sun X; Wang F; Cui Z; Zhang D
    Opt Express; 2014 May; 22(9):10716-27. PubMed ID: 24921773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.