These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26906379)

  • 1. Infrared sensitive liquid crystal light valve with semiconductor substrate.
    Shcherbin K; Gvozdovskyy I; Evans DR
    Appl Opt; 2016 Feb; 55(5):1076-81. PubMed ID: 26906379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-beam amplification by two-wave mixing in a liquid-crystal light valve.
    Brignon A; Bongrand I; Loiseaux B; Huignard JP
    Opt Lett; 1997 Dec; 22(24):1855-7. PubMed ID: 18188386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex amplitude reflectance of the liquid crystal light valve.
    Lu K; Saleh BE
    Appl Opt; 1991 Jun; 30(17):2354-62. PubMed ID: 20700213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically controlled Fabry-Perot interferometer using a liquid crystal light valve.
    Taber DB; Davis JA; Holloway LA; Almagor O
    Appl Opt; 1990 Jun; 29(17):2623-31. PubMed ID: 20567301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on photoelectric dispersion characteristic of liquid crystal light valve].
    Huang C; Zhou XP; Ouyang YD; Lin XS; Wu YJ; Huang YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):539-41. PubMed ID: 16830775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmissive liquid crystal light-valve for near-infrared applications.
    Bortolozzo U; Residori S; Huignard JP
    Appl Opt; 2013 Aug; 52(22):E73-7. PubMed ID: 23913092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. kHz-speed optically induced phase gratings with liquid crystal light valves in transient dynamic mode.
    Bortolozzo U; Residori S; Huignard JP
    Opt Lett; 2021 Oct; 46(19):4730-4733. PubMed ID: 34598185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gain enhancement by signal beam chopping for two-wave coupling with a BSO crystal.
    Kawata Y; Kawata S; Minami S
    Appl Opt; 1991 Jun; 30(18):2453-7. PubMed ID: 20700231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent beam amplification with a photorefractive liquid crystal.
    Khoo IC; Guenther BD; Wood MV; Chen P; Shih MY
    Opt Lett; 1997 Aug; 22(16):1229-31. PubMed ID: 18185803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light.
    Sobolewska A; Bartkiewicz S; Miniewicz A; Schab-Balcerzak E
    J Phys Chem B; 2010 Aug; 114(30):9751-60. PubMed ID: 20666518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material.
    Aubourg P; Huignard JP; Hareng M; Mullen RA
    Appl Opt; 1982 Oct; 21(20):3706-12. PubMed ID: 20396303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase calibration and applications of a liquid-crystal spatial light modulator.
    Bergeron A; Gauvin J; Gagnon F; Gingras D; Arsenault HH; Doucet M
    Appl Opt; 1995 Aug; 34(23):5133-9. PubMed ID: 21052359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared sensitive two-wave mixing adaptive interferometer based on a liquid crystal light valve with a semiconductor substrate.
    Shcherbin K; Gvozdovskyy I; Shumelyuk A; Slagle J; Evans DR
    Appl Opt; 2022 Aug; 61(22):6498-6503. PubMed ID: 36255873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive liquid crystal optically addressed spatial light modulator for infrared-to-visible image up-conversion.
    Solodar A; Manis-Levy H; Sarusi G; Abdulhalim I
    Opt Lett; 2019 Mar; 44(5):1269-1272. PubMed ID: 30821765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders.
    Calero V; García-Martínez P; Albero J; Sánchez-López MM; Moreno I
    Opt Lett; 2013 Nov; 38(22):4663-6. PubMed ID: 24322100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photorefractive organically modified silica glass with high optical gain.
    Cheben P; del Monte F; Worsfold DJ; Carlsson DJ; Grover CP; Mackenzie JD
    Nature; 2000 Nov; 408(6808):64-7. PubMed ID: 11081505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator.
    Jia W; Chen Z; Wen FJ; Chung PS
    Appl Opt; 2011 Mar; 50(7):B12-7. PubMed ID: 21364706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators.
    Arrizón V; Méndez G; Sánchez-de-La-Llave D
    Opt Express; 2005 Oct; 13(20):7913-27. PubMed ID: 19498821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrabroadband spectral amplitude modulation using a liquid crystal spatial light modulator with ultraviolet-to-near-infrared bandwidth.
    Zhu J; Tanigawa T; Chen T; Fang S; Yamane K; Sekikawa T; Yamashita M
    Appl Opt; 2010 Jan; 49(3):350-7. PubMed ID: 20090799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO:Ru hybrid structure.
    Liu RC; Marinova V; Lin SH; Chen MS; Lin YH; Hsu KY
    Opt Lett; 2014 Jun; 39(11):3320-3. PubMed ID: 24876043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.