BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26906423)

  • 1. Post-transcriptional regulation mediated by specific neurofilament introns in vivo.
    Wang C; Szaro BG
    J Cell Sci; 2016 Apr; 129(7):1500-11. PubMed ID: 26906423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of middle neurofilament RNA pools during optic nerve regeneration.
    Ananthakrishnan L; Gervasi C; Szaro BG
    Neuroscience; 2008 Apr; 153(1):144-53. PubMed ID: 18358619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A crucial role for hnRNP K in axon development in Xenopus laevis.
    Liu Y; Gervasi C; Szaro BG
    Development; 2008 Sep; 135(18):3125-35. PubMed ID: 18725517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmentally regulated alternative splicing in the Xenopus laevis c-Myc gene creates an intron-1 containing c-Myc RNA present only in post-midblastula embryos.
    King MW
    Nucleic Acids Res; 1991 Oct; 19(20):5777-83. PubMed ID: 1945855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision.
    Gordon JM; Phizicky DV; Neugebauer KM
    Curr Opin Genet Dev; 2021 Apr; 67():67-76. PubMed ID: 33291060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-transcriptional control of neurofilaments in development and disease.
    Thyagarajan A; Strong MJ; Szaro BG
    Exp Cell Res; 2007 Jun; 313(10):2088-97. PubMed ID: 17428473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis.
    Liu Y; Szaro BG
    Development; 2011 Jul; 138(14):3079-90. PubMed ID: 21693523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs.
    Campos-Melo D; Hawley ZCE; Strong MJ
    Mol Brain; 2018 Jul; 11(1):43. PubMed ID: 30029677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first intron of the mouse neurofilament light gene (NF-L) increases gene expression.
    Hsu C; Janicki S; Monteiro MJ
    Brain Res Mol Brain Res; 1995 Sep; 32(2):241-51. PubMed ID: 7500835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron.
    Vader A; Nielsen H; Johansen S
    EMBO J; 1999 Feb; 18(4):1003-13. PubMed ID: 10022842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intron splicing suppresses RNA silencing in Arabidopsis.
    Christie M; Croft LJ; Carroll BJ
    Plant J; 2011 Oct; 68(1):159-67. PubMed ID: 21689169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing.
    Rose AB; Beliakoff JA
    Plant Physiol; 2000 Feb; 122(2):535-42. PubMed ID: 10677446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex.
    Thyagarajan A; Szaro BG
    Brain Res; 2008 Jan; 1189():33-42. PubMed ID: 18054780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana.
    Emami S; Arumainayagam D; Korf I; Rose AB
    Plant Biotechnol J; 2013 Jun; 11(5):555-63. PubMed ID: 23347383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of heterogeneous nuclear ribonucleoprotein K at an extracellular signal-regulated kinase phosphorylation site promotes neurofilament-medium protein expression and axon outgrowth in Xenopus.
    Hutchins EJ; Belrose JL; Szaro BG
    Neurosci Lett; 2015 Oct; 607():59-65. PubMed ID: 26409787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detained introns are a novel, widespread class of post-transcriptionally spliced introns.
    Boutz PL; Bhutkar A; Sharp PA
    Genes Dev; 2015 Jan; 29(1):63-80. PubMed ID: 25561496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental expression of H-2K major histocompatibility complex class I transgenes requires the presence of proximal introns.
    Drezen JM; Cohen-Tannoudji M; Pournin S; Babinet C; Morello D
    Dev Dyn; 1995 Sep; 204(1):98-105. PubMed ID: 8563030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells.
    Lu S; Cullen BR
    RNA; 2003 May; 9(5):618-30. PubMed ID: 12702820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of spliceosomal intron proliferation in the face of widespread ectopic expression.
    Rodríguez-Trelles F; Tarrío R; Ayala FJ
    Gene; 2006 Feb; 366(2):201-8. PubMed ID: 16288838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains.
    Ostersetzer O; Cooke AM; Watkins KP; Barkan A
    Plant Cell; 2005 Jan; 17(1):241-55. PubMed ID: 15598799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.