These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26906571)

  • 1. Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam.
    Berguiga L; Streppa L; Boyer-Provera E; Martinez-Torres C; Schaeffer L; Elezgaray J; Arneodo A; Argoul F
    Appl Opt; 2016 Feb; 55(6):1216-27. PubMed ID: 26906571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam.
    Chen W; Zhan Q
    Opt Lett; 2009 Mar; 34(6):722-4. PubMed ID: 19282911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization conversion in confocal microscopy with radially polarized illumination.
    Tang WT; Yew EY; Sheppard CJ
    Opt Lett; 2009 Jul; 34(14):2147-9. PubMed ID: 19823530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam.
    Watanabe K; Terakado G; Kano H
    Opt Lett; 2009 Apr; 34(8):1180-2. PubMed ID: 19370110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of cellular dynamics on polarized CoCrMo alloy using time-lapse live-cell imaging.
    Haeri M; Gilbert JL
    Acta Biomater; 2013 Nov; 9(11):9220-8. PubMed ID: 23831720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution enhancement of a surface immersion microscope near the plasmon resonance.
    Smolyaninov II; Davis CC; Elliott J; Zayats AV
    Opt Lett; 2005 Feb; 30(4):382-4. PubMed ID: 15762435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude and phase images of cellular structures with a scanning surface plasmon microscope.
    Berguiga L; Roland T; Monier K; Elezgaray J; Argoul F
    Opt Express; 2011 Mar; 19(7):6571-86. PubMed ID: 21451685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy.
    Jamil MM; Denyer MC; Youseffi M; Britland ST; Liu S; See CW; Somekh MG; Zhang J
    J Struct Biol; 2008 Oct; 164(1):75-80. PubMed ID: 18611441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy.
    He RY; Lin CY; Su YD; Chiu KC; Chang NS; Wu HL; Chen SJ
    Opt Express; 2010 Feb; 18(4):3649-59. PubMed ID: 20389375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy.
    Giebel K; Bechinger C; Herminghaus S; Riedel M; Leiderer P; Weiland U; Bastmeyer M
    Biophys J; 1999 Jan; 76(1 Pt 1):509-16. PubMed ID: 9876164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light.
    Kim J; Kim DC; Back SH
    Microsc Res Tech; 2009 Jun; 72(6):441-6. PubMed ID: 19204923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-lapse imaging of in vitro myogenesis using atomic force microscopy.
    Städler B; Blättler TM; Franco-Obregón A
    J Microsc; 2010 Jan; 237(1):63-9. PubMed ID: 20055919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods.
    Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ
    ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlative light-electron microscopy a potent tool for the imaging of rare or unique cellular and tissue events and structures.
    Mironov AA; Beznoussenko GV
    Methods Enzymol; 2012; 504():201-19. PubMed ID: 22264536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging via widefield surface plasmon resonance microscope for studying bone cell interactions with micropatterned ECM proteins.
    Sefat F; Denyer MC; Youseffi M
    J Microsc; 2011 Mar; 241(3):282-90. PubMed ID: 21118224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized light microscopy: principles and practice.
    Oldenbourg R
    Cold Spring Harb Protoc; 2013 Nov; 2013(11):. PubMed ID: 24184765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Analysis of Non-Interferometry Based Surface Plasmon Resonance Microscopes.
    Tontarawongsa S; Visitsattapongse S; Pechprasarn S
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy.
    Su YD; Chiu KC; Chang NS; Wu HL; Chen SJ
    Opt Express; 2010 Sep; 18(19):20125-35. PubMed ID: 20940903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-lapse imaging of morphological changes in a single neuron during the early stages of apoptosis using scanning ion conductance microscopy.
    Tanaka A; Tanaka R; Kasai N; Tsukada S; Okajima T; Sumitomo K
    J Struct Biol; 2015 Jul; 191(1):32-8. PubMed ID: 26051905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superresolution effect due to a thin dielectric slab for imaging with radially polarized light.
    Meng P; Pereira SF; Dou X; Urbach HP
    Opt Express; 2020 Jul; 28(14):20660-20668. PubMed ID: 32680121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.