BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26906834)

  • 1. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.
    Gleim AV; Egorov VI; Nazarov YV; Smirnov SV; Chistyakov VV; Bannik OI; Anisimov AA; Kynev SM; Ivanova AE; Collins RJ; Kozlov SA; Buller GS
    Opt Express; 2016 Feb; 24(3):2619-33. PubMed ID: 26906834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Security analysis of quantum key distribution on passive optical networks.
    Lim K; Ko H; Suh C; Rhee JK
    Opt Express; 2017 May; 25(10):11894-11909. PubMed ID: 28788747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical underwater quantum key distribution based on decoy-state BB84 protocol.
    Dong S; Yu Y; Zheng S; Zhu Q; Gai L; Li W; Gu Y
    Appl Opt; 2022 May; 61(15):4471-4477. PubMed ID: 36256286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Signal Polarization on Quantum Bit Error Rate for Subcarrier Wave Quantum Key Distribution Protocol.
    Gaidash A; Kozubov A; Medvedeva S; Miroshnichenko G
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33317165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer.
    Li YP; Chen W; Wang FX; Yin ZQ; Zhang L; Liu H; Wang S; He DY; Zhou Z; Guo GC; Han ZF
    Opt Lett; 2019 Sep; 44(18):4523-4526. PubMed ID: 31517921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits.
    Ding YY; Chen W; Chen H; Wang C; Li YP; Wang S; Yin ZQ; Guo GC; Han ZF
    Opt Lett; 2017 Mar; 42(6):1023-1026. PubMed ID: 28295082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum cryptography with entangled photons.
    Jennewein T; Simon C; Weihs G; Weinfurter H; Zeilinger A
    Phys Rev Lett; 2000 May; 84(20):4729-32. PubMed ID: 10990782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental quantum key distribution with decoy states.
    Zhao Y; Qi B; Ma X; Lo HK; Qian L
    Phys Rev Lett; 2006 Feb; 96(7):070502. PubMed ID: 16606067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of subcarrier multiplexed quantum key distribution system.
    Mora J; Ruiz-Alba A; Amaya W; Martínez A; García-Muñoz V; Calvo D; Capmany J
    Opt Lett; 2012 Jun; 37(11):2031-3. PubMed ID: 22660111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.
    Miroshnichenko GP; Kozubov AV; Gaidash AA; Gleim AV; Horoshko DB
    Opt Express; 2018 Apr; 26(9):11292-11308. PubMed ID: 29716053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of underwater decoy-state quantum key distribution with all-optical transmission.
    Yu Y; Li W; Wei Y; Yang Y; Dong S; Qian T; Wang S; Zhu Q; Zheng S; Zhang X; Gu Y
    Opt Express; 2021 Sep; 29(19):30506-30519. PubMed ID: 34614774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.
    Jofre M; Gardelein A; Anzolin G; Amaya W; Capmany J; Ursin R; Peñate L; Lopez D; San Juan JL; Carrasco JA; Garcia F; Torcal-Milla FJ; Sanchez-Brea LM; Bernabeu E; Perdigues JM; Jennewein T; Torres JP; Mitchell MW; Pruneri V
    Opt Express; 2011 Feb; 19(5):3825-34. PubMed ID: 21369207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.
    Zhang Z; Mower J; Englund D; Wong FN; Shapiro JH
    Phys Rev Lett; 2014 Mar; 112(12):120506. PubMed ID: 24724641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of underwater quantum key distribution with polarization encoding.
    Zhao SC; Han XH; Xiao Y; Shen Y; Gu YJ; Li WD
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):883-892. PubMed ID: 31045017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-bin phase-encoding quantum key distribution using Sagnac-based optics and compatible electronics.
    Tang YL; Zhou C; Li DD; Xie ZL; Xu ML; Sun J; Zhang ZX; Jiang LJ; Wang LW; Liu GQ; Wu K; Ma Y; Zheng BR; Jiang MS; Wang Y; Zhao YK; Ma QL; Zhang D; Zhao MS; Bao WS; Tang SB
    Opt Express; 2023 Jul; 31(16):26335-26343. PubMed ID: 37710496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization insensitive phase modulator for quantum cryptosystems.
    Qi B; Huang LL; Lo HK; Qian L
    Opt Express; 2006 May; 14(10):4264-9. PubMed ID: 19516579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors.
    Shibata H; Honjo T; Shimizu K
    Opt Lett; 2014 Sep; 39(17):5078-81. PubMed ID: 25166078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Security of the Decoy-State BB84 Protocol with Imperfect State Preparation.
    Reutov A; Tayduganov A; Mayboroda V; Fat'yanov O
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental underwater quantum key distribution.
    Feng Z; Li S; Xu Z
    Opt Express; 2021 Mar; 29(6):8725-8736. PubMed ID: 33820314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km.
    Schmitt-Manderbach T; Weier H; Fürst M; Ursin R; Tiefenbacher F; Scheidl T; Perdigues J; Sodnik Z; Kurtsiefer C; Rarity JG; Zeilinger A; Weinfurter H
    Phys Rev Lett; 2007 Jan; 98(1):010504. PubMed ID: 17358463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.