These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26907003)

  • 1. Systematic study of thresholdless oscillation in high-β buried multiple-quantum-well photonic crystal nanocavity lasers.
    Takiguchi M; Taniyama H; Sumikura H; Birowosuto MD; Kuramochi E; Shinya A; Sato T; Takeda K; Matsuo S; Notomi M
    Opt Express; 2016 Feb; 24(4):3441-50. PubMed ID: 26907003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thresholdless quantum dot nanolaser.
    Ota Y; Kakuda M; Watanabe K; Iwamoto S; Arakawa Y
    Opt Express; 2017 Aug; 25(17):19981-19994. PubMed ID: 29041684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser.
    Kim J; Shinya A; Nozaki K; Taniyama H; Chen CH; Sato T; Matsuo S; Notomi M
    Opt Express; 2012 May; 20(11):11643-51. PubMed ID: 22714150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities.
    Jagsch ST; Triviño NV; Lohof F; Callsen G; Kalinowski S; Rousseau IM; Barzel R; Carlin JF; Jahnke F; Butté R; Gies C; Hoffmann A; Grandjean N; Reitzenstein S
    Nat Commun; 2018 Feb; 9(1):564. PubMed ID: 29422492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lasing threshold of thresholdless and non-thresholdless metal-semiconductor nanolasers.
    Vyshnevyy AA; Fedyanin DY
    Opt Express; 2018 Dec; 26(25):33473-33483. PubMed ID: 30645499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching of Photonic Crystal Lasers by Graphene.
    Hwang MS; Kim HR; Kim KH; Jeong KY; Park JS; Choi JH; Kang JH; Lee JM; Park WI; Song JH; Seo MK; Park HG
    Nano Lett; 2017 Mar; 17(3):1892-1898. PubMed ID: 28165745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature continuous-wave nanolaser diode utilized by ultrahigh-Q few-cell photonic crystal nanocavities.
    Kuramochi E; Duprez H; Kim J; Takiguchi M; Takeda K; Fujii T; Nozaki K; Shinya A; Sumikura H; Taniyama H; Matsuo S; Notomi M
    Opt Express; 2018 Oct; 26(20):26598-26617. PubMed ID: 30469744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic crystal nanocavity array laser.
    Altug H; Vucković J
    Opt Express; 2005 Oct; 13(22):8819-28. PubMed ID: 19498914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room temperature continuous-wave lasing in photonic crystal nanocavity.
    Nomura M; Iwamoto S; Watanabe K; Kumagai N; Nakata Y; Ishida S; Arakawa Y
    Opt Express; 2006 Jun; 14(13):6308-15. PubMed ID: 19516806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature.
    Hostein R; Braive R; Le Gratiet L; Talneau A; Beaudoin G; Robert-Philip I; Sagnes I; Beveratos A
    Opt Lett; 2010 Apr; 35(8):1154-6. PubMed ID: 20410950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains.
    Kim KH; Hwang MS; Kim HR; Choi JH; No YS; Park HG
    Nat Commun; 2016 Dec; 7():13893. PubMed ID: 28000688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic crystal nanocavity laser with a single quantum dot gain.
    Nomura M; Kumagai N; Iwamoto S; Ota Y; Arakawa Y
    Opt Express; 2009 Aug; 17(18):15975-82. PubMed ID: 19724596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reversibly tunable photonic crystal nanocavity laser using photochromic thin film.
    Sridharan D; Bose R; Kim H; Solomon GS; Waks E
    Opt Express; 2011 Mar; 19(6):5551-8. PubMed ID: 21445193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling.
    Kreinberg S; Chow WW; Wolters J; Schneider C; Gies C; Jahnke F; Höfling S; Kamp M; Reitzenstein S
    Light Sci Appl; 2017 Aug; 6(8):e17030. PubMed ID: 30167281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic crystal nanofishbone nanocavity.
    Lu TW; Lee PT
    Opt Lett; 2013 Aug; 38(16):3129-32. PubMed ID: 24104667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocavity-based self-frequency conversion laser.
    Ota Y; Watanabe K; Iwamoto S; Arakawa Y
    Opt Express; 2013 Aug; 21(17):19778-89. PubMed ID: 24105526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser.
    Nozaki K; Kita S; Baba T
    Opt Express; 2007 Jun; 15(12):7506-14. PubMed ID: 19547074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.
    Javadi A; Maibom S; Sapienza L; Thyrrestrup H; García PD; Lodahl P
    Opt Express; 2014 Dec; 22(25):30992-1001. PubMed ID: 25607048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-tuned quantum dot gain in photonic crystal lasers.
    Strauf S; Hennessy K; Rakher MT; Choi YS; Badolato A; Andreani LC; Hu EL; Petroff PM; Bouwmeester D
    Phys Rev Lett; 2006 Mar; 96(12):127404. PubMed ID: 16605958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers.
    Wang J; Wei W; Yan X; Zhang J; Zhang X; Ren X
    Opt Express; 2017 Apr; 25(8):9358-9367. PubMed ID: 28437898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.