These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 26907048)

  • 21. 1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency.
    Liu X; Chandrasekhar S; Chen X; Winzer PJ; Pan Y; Taunay TF; Zhu B; Fishteyn M; Yan MF; Fini JM; Monberg EM; Dimarcello FV
    Opt Express; 2011 Dec; 19(26):B958-64. PubMed ID: 22274125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
    Hmood JK; Harun SW; Emami SD; Khodaei A; Noordin KA; Ahmad H; Shalaby HM
    Opt Express; 2015 Feb; 23(4):3886-900. PubMed ID: 25836428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BICM-ID scheme for clipped DCO-OFDM in visible light communications.
    Tan J; Wang Z; Wang Q; Dai L
    Opt Express; 2016 Mar; 24(5):4573-4581. PubMed ID: 29092284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of clipping noise on the sum rate of NOMA with PD-DCO-OFDM and conventional DCO-OFDM.
    Gebeyehu ZH
    Heliyon; 2020 Feb; 6(2):e03363. PubMed ID: 32072053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning for DCO-OFDM based LiFi.
    Purnita KS; Mondal MRH
    PLoS One; 2021; 16(11):e0259955. PubMed ID: 34813606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BOMA and OFDM/OQAM modulation for a radio-over-fiber system with enhanced spectral efficiency.
    Chen X; Liu C; Nian L; Cheng M; Fu S; Tang M; Liu D; Deng L
    Opt Lett; 2018 Oct; 43(20):4859-4862. PubMed ID: 30320768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersion tolerance enhancement using an improved offset-QAM OFDM scheme.
    Zhao J; Townsend PD
    Opt Express; 2015 Jun; 23(13):17638-52. PubMed ID: 26191771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital power division multiplexed DD-OFDM using fundamental mode transmission in few-mode fiber.
    Swain S; Bhashyam S; Koilpillai RD; Venkitesh D
    Opt Express; 2020 Jun; 28(12):17809-17819. PubMed ID: 32679984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE.
    Omiya T; Yoshida M; Nakazawa M
    Opt Express; 2013 Feb; 21(3):2632-41. PubMed ID: 23481719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental demonstration of real-time adaptively modulated DDO-OFDM systems with a high spectral efficiency up to 5.76bit/s/Hz transmission over SMF links.
    Chen M; He J; Tang J; Wu X; Chen L
    Opt Express; 2014 Jul; 22(15):17691-9. PubMed ID: 25089389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.
    Bai J; Li Y; Yi Y; Cheng W; Du H
    Opt Express; 2017 Oct; 25(20):24630-24638. PubMed ID: 29041408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.
    Islim MS; Haas H
    Opt Express; 2016 May; 24(11):11932-49. PubMed ID: 27410116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide.
    Li C; Gui C; Xiao X; Yang Q; Yu S; Wang J
    Opt Lett; 2014 Aug; 39(15):4583-6. PubMed ID: 25078234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 0.5-bit/s/Hz fine-grained adaptive OFDM modulation for bandlimited underwater VLC.
    Nie Y; Chen C; Savović S; Wang Z; Min R; You X; Zeng Z; Shen G
    Opt Express; 2024 Jan; 32(3):4537-4552. PubMed ID: 38297653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode.
    Chi YC; Li YC; Wang HY; Peng PC; Lu HH; Lin GR
    Opt Express; 2012 Aug; 20(18):20071-7. PubMed ID: 23037059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission.
    Cheng MC; Chi YC; Li YC; Tsai CT; Lin GR
    Opt Express; 2014 Jun; 22(13):15724-36. PubMed ID: 24977832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signal restoration in intensity-modulated optical OFDM access systems.
    Vanin E
    Opt Lett; 2011 Nov; 36(22):4338-40. PubMed ID: 22089556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DFT-based offset-QAM OFDM for optical communications.
    Zhao J
    Opt Express; 2014 Jan; 22(1):1114-26. PubMed ID: 24515071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.
    Zhao J; Chen LK
    Opt Express; 2017 Apr; 25(8):9368-9377. PubMed ID: 28437899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the computational effort for chromatic dispersion compensation in coherent optical PM-OFDM and PM-QAM systems.
    Poggiolini P; Carena A; Curri V; Forghieri F
    Opt Express; 2009 Feb; 17(3):1385-403. PubMed ID: 19188967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.