These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26907060)

  • 1. Efficient nonlinear equalizer for intra-channel nonlinearity compensation for next generation agile and dynamically reconfigurable optical networks.
    Malekiha M; Tselniker I; Plant DV
    Opt Express; 2016 Feb; 24(4):4097-108. PubMed ID: 26907060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic dispersion mitigation in long-haul fiber-optic communication networks by sub-band partitioning.
    Malekiha M; Tselniker I; Plant DV
    Opt Express; 2015 Dec; 23(25):32654-63. PubMed ID: 26699054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blind time domain nonlinear compensator embedded in the constant modulus algorithm.
    Zhou J; Zhang Y
    Opt Express; 2019 Aug; 27(16):22794-22807. PubMed ID: 31510565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of DSP-based nonlinear equalizers for intra-channel nonlinearity compensation in coherent optical OFDM.
    Giacoumidis E; Mhatli S; Nguyen T; Le ST; Aldaya I; McCarthy ME; Ellis AD; Eggleton BJ
    Opt Lett; 2016 Jun; 41(11):2509-12. PubMed ID: 27244401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of low-complexity fiber chromatic dispersion mitigation for reduced guard-interval OFDM coherent optical communication systems based on digital spectrum sub-band multiplexing.
    Malekiha M; Tselniker I; Nazarathy M; Tolmachev A; Plant DV
    Opt Express; 2015 Oct; 23(20):25608-19. PubMed ID: 26480077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer.
    Guiomar FP; Reis JD; Teixeira AL; Pinto AN
    Opt Express; 2012 Jan; 20(2):1360-9. PubMed ID: 22274480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-stage perturbation theory for compensating intra-channel nonlinear impairments in fiber-optic links.
    Liang X; Kumar S
    Opt Express; 2014 Dec; 22(24):29733-45. PubMed ID: 25606904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive multi-layer filters incorporated with Volterra filters for impairment compensation including transmitter and receiver nonlinearity.
    Arikawa M; Hayashi K
    Opt Express; 2021 Aug; 29(18):28366-28387. PubMed ID: 34614970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks.
    Zhang S; Yaman F; Nakamura K; Inoue T; Kamalov V; Jovanovski L; Vusirikala V; Mateo E; Inada Y; Wang T
    Nat Commun; 2019 Jul; 10(1):3033. PubMed ID: 31292442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental implementation of a neural network optical channel equalizer in restricted hardware using pruning and quantization.
    Ron DA; Freire PJ; Prilepsky JE; Kamalian-Kopae M; Napoli A; Turitsyn SK
    Sci Rep; 2022 May; 12(1):8713. PubMed ID: 35610254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission.
    Guiomar FP; Reis JD; Carena A; Bosco G; Teixeira AL; Pinto AN
    Opt Express; 2013 Jan; 21(1):276-88. PubMed ID: 23388921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of momentum-based frequency-domain MIMO equalizer in the presence of feedback delay.
    Yi W; Sillekens E; Lavery D; Dzieciol H; Zhou S; Law K; Chen J; Bayvel P; Killey RI
    Opt Express; 2020 Jun; 28(13):19133-19143. PubMed ID: 32672197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian mixture model-hidden Markov model based nonlinear equalizer for optical fiber transmission.
    Tian F; Zhou Q; Yang C
    Opt Express; 2020 Mar; 28(7):9728-9737. PubMed ID: 32225574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 81-GHz W-band 60-Gbps 64-QAM wireless transmission based on a dual-GRU equalizer.
    Liu C; Wang C; Zhou W; Wang F; Kong M; Yu J
    Opt Express; 2022 Jan; 30(2):2364-2377. PubMed ID: 35209378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinearity mitigation of intensity modulation and coherent detection systems.
    Wei J; Stojanovic N; Xie C
    Opt Lett; 2018 Jul; 43(13):3148-3151. PubMed ID: 29957803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-complexity nonlinear equalizer based on absolute operation for C-band IM/DD systems.
    Yu Y; Bo T; Che Y; Kim D; Kim H
    Opt Express; 2020 Jun; 28(13):19617-19628. PubMed ID: 32672235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real time low-complexity adaptive channel equalization for coherent optical transmission systems.
    Zhang X; Li X; Zeng T; Meng L; Li J; Luo M; Jiang F; Liu Z; Yu S
    Opt Express; 2020 Feb; 28(4):5058-5068. PubMed ID: 32121734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive frequency-domain equalization in digital coherent optical receivers.
    Faruk MS; Kikuchi K
    Opt Express; 2011 Jun; 19(13):12789-98. PubMed ID: 21716521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel.
    Zhao H; Zhang J
    IEEE Trans Neural Netw; 2009 Apr; 20(4):665-74. PubMed ID: 19244019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equalization of nonlinear transmission impairments by maximum-likelihood-sequence estimation in digital coherent receivers.
    Khairuzzaman M; Zhang C; Igarashi K; Katoh K; Kikuchi K
    Opt Express; 2010 Mar; 18(5):4776-82. PubMed ID: 20389490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.