These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26907061)

  • 1. Broad-tunable terahertz source with over-mode waveguide driven by train of electron bunches.
    Liu W; Lu Y; He Z; Li W; Wang L; Jia Q
    Opt Express; 2016 Feb; 24(4):4109-16. PubMed ID: 26907061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz radiation from high-order guided mode excited by a train of electron bunches.
    Liu W
    Opt Lett; 2015 Sep; 40(17):3974-7. PubMed ID: 26368690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent Diffraction Radiation of Relativistic Terahertz Pulses from a Laser-Driven Microplasma Waveguide.
    Yi L; Fülöp T
    Phys Rev Lett; 2019 Aug; 123(9):094801. PubMed ID: 31524442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.
    Li W; Lu Y; He Z; Jia Q; Wang L
    Opt Lett; 2016 Jun; 41(11):2458-61. PubMed ID: 27244388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams.
    Shu GX; Liu G; Qian ZF
    Opt Express; 2018 Apr; 26(7):8040-8048. PubMed ID: 29715777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.
    Suizu K; Koketsu K; Shibuya T; Tsutsui T; Akiba T; Kawase K
    Opt Express; 2009 Apr; 17(8):6676-81. PubMed ID: 19365494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation.
    Zhang Z; Yan L; Du Y; Zhou Z; Su X; Zheng L; Wang D; Tian Q; Wang W; Shi J; Chen H; Huang W; Gai W; Tang C
    Phys Rev Lett; 2016 May; 116(18):184801. PubMed ID: 27203327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-mode tunable terahertz generation in lithium niobate driven by spatially shaped femtosecond laser.
    Zhong SC; Zhu Y; Du LH; Zhai ZH; Li J; Zhao JH; Li ZR; Zhu LG
    Opt Express; 2017 Jul; 25(15):17066-17075. PubMed ID: 28789203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband and narrowband laser-based terahertz source and its application for resonant and non-resonant excitation of antiferromagnetic modes in NiO.
    Chefonov OV; Ovchinnikov AV; Hauri CP; Agranat MB
    Opt Express; 2019 Sep; 27(19):27273-27281. PubMed ID: 31674592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.
    Kim N; Han SP; Ko H; Leem YA; Ryu HC; Lee CW; Lee D; Jeon MY; Noh SK; Park KH
    Opt Express; 2011 Aug; 19(16):15397-403. PubMed ID: 21934903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable few-cycle and multicycle coherent terahertz radiation from relativistic electrons.
    Shen Y; Yang X; Carr GL; Hidaka Y; Murphy JB; Wang X
    Phys Rev Lett; 2011 Nov; 107(20):204801. PubMed ID: 22181737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subpicosecond bunch train production for a tunable mJ level THz source.
    Antipov S; Babzien M; Jing C; Fedurin M; Gai W; Kanareykin A; Kusche K; Yakimenko V; Zholents A
    Phys Rev Lett; 2013 Sep; 111(13):134802. PubMed ID: 24116784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volt-per-Ångstrom terahertz fields from X-ray free-electron lasers.
    Tanikawa T; Karabekyan S; Kovalev S; Casalbuoni S; Asgekar V; Bonetti S; Wall S; Laarmann T; Turchinovich D; Zalden P; Kampfrath T; Fisher AS; Stojanovic N; Gensch M; Geloni G
    J Synchrotron Radiat; 2020 May; 27(Pt 3):796-798. PubMed ID: 32381783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.
    Kim N; Shin J; Sim E; Lee CW; Yee DS; Jeon MY; Jang Y; Park KH
    Opt Express; 2009 Aug; 17(16):13851-9. PubMed ID: 19654791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel schemes for the optimization of the SPARC narrow band THz source.
    Marchetti B; Bacci A; Chiadroni E; Cianchi A; Ferrario M; Mostacci A; Pompili R; Ronsivalle C; Spataro B; Zagorodnov I
    Rev Sci Instrum; 2015 Jul; 86(7):073301. PubMed ID: 26233366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a terahertz-driven electron gun.
    Huang WR; Nanni EA; Ravi K; Hong KH; Fallahi A; Wong LJ; Keathley PD; Zapata LE; Kärtner FX
    Sci Rep; 2015 Oct; 5():14899. PubMed ID: 26486697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-power terahertz radiation from relativistic electrons.
    Carr GL; Martin MC; McKinney WR; Jordan K; Neil GR; Williams GP
    Nature; 2002 Nov; 420(6912):153-6. PubMed ID: 12432385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources.
    Jung S; Jiang A; Jiang Y; Vijayraghavan K; Wang X; Troccoli M; Belkin MA
    Nat Commun; 2014 Jul; 5():4267. PubMed ID: 25014053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of frequency-locked coherent terahertz Smith-Purcell radiation.
    Korbly SE; Kesar AS; Sirigiri JR; Temkin RJ
    Phys Rev Lett; 2005 Feb; 94(5):054803. PubMed ID: 15783652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap.
    Vicario C; Monoszlai B; Jazbinsek M; Lee SH; Kwon OP; Hauri CP
    Sci Rep; 2015 Sep; 5():14394. PubMed ID: 26400005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.