BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26907252)

  • 1. Drosophotoxicology: An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms.
    Chifiriuc MC; Ratiu AC; Popa M; Ecovoiu AA
    Int J Mol Sci; 2016 Feb; 17(2):36. PubMed ID: 26907252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila as a Model for Developmental Toxicology: Using and Extending the Drosophotoxicology Model.
    Affleck JG; Walker VK
    Methods Mol Biol; 2019; 1965():139-153. PubMed ID: 31069673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster.
    Vecchio G; Galeone A; Brunetti V; Maiorano G; Rizzello L; Sabella S; Cingolani R; Pompa PP
    Nanomedicine; 2012 Jan; 8(1):1-7. PubMed ID: 22094122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials.
    Demir E; Demir FT; Marcos R
    Adv Exp Med Biol; 2022; 1357():275-301. PubMed ID: 35583649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment.
    Vega-Alvarez S; Herrera A; Rinaldi C; Carrero-Martínez FA
    Int J Nanomedicine; 2014; 9():2031-41. PubMed ID: 24790441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.
    Alaraby M; Annangi B; Hernández A; Creus A; Marcos R
    J Hazard Mater; 2015 Oct; 296():166-174. PubMed ID: 25917694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila melanogaster as a model organism to study nanotoxicity.
    Ong C; Yung LY; Cai Y; Bay BH; Baeg GH
    Nanotoxicology; 2015 May; 9(3):396-403. PubMed ID: 25051331
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Demir E
    Nanotoxicology; 2020 Nov; 14(9):1271-1279. PubMed ID: 32969292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotoxic analysis of silver nanoparticles in Drosophila.
    Demir E; Vales G; Kaya B; Creus A; Marcos R
    Nanotoxicology; 2011 Sep; 5(3):417-24. PubMed ID: 21039182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconciling the controversial data on the effects of C
    Yasinskyi Y; O P; O M; V R; Prylutskyy Y; Tauscher E; Ritter U; Kozeretska I
    Toxicol Lett; 2019 Aug; 310():92-98. PubMed ID: 30999038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.
    Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R
    Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly.
    Barik BK; Mishra M
    Nanotoxicology; 2019 Mar; 13(2):258-284. PubMed ID: 30587065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adverse biological effects of ingested polystyrene microplastics using Drosophila
    Demir E
    J Toxicol Environ Health A; 2021 Aug; 84(16):649-660. PubMed ID: 33874844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.
    Jovanović B; Cvetković VJ; Mitrović TLj
    Chemosphere; 2016 Feb; 144():43-9. PubMed ID: 26344147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods to Assay the Behavior of Drosophila melanogaster for Toxicity Study.
    Xiao G
    Methods Mol Biol; 2021; 2326():47-54. PubMed ID: 34097260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candle soot derived carbon nanoparticles: An assessment of cellular and progressive toxicity using Drosophila melanogaster model.
    Pandey H; Saini S; Singh SP; Gautam NK; Singh S
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Feb; 228():108646. PubMed ID: 31654826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster.
    Vecchio G; Galeone A; Brunetti V; Maiorano G; Sabella S; Cingolani R; Pompa PP
    PLoS One; 2012; 7(1):e29980. PubMed ID: 22238688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model.
    Turna Demir F; Demir E
    J Appl Toxicol; 2022 Nov; 42(11):1854-1867. PubMed ID: 35837816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster.
    Sabat D; Patnaik A; Ekka B; Dash P; Mishra M
    Physiol Behav; 2016 Dec; 167():76-85. PubMed ID: 27609308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fruit fly in the nanoworld: once again Drosophila contributes to environment and human health.
    Vecchio G
    Nanotoxicology; 2015 Mar; 9(2):135-7. PubMed ID: 24766263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.