BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 26907255)

  • 1. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells.
    Kawser Hossain M; Abdal Dayem A; Han J; Kumar Saha S; Yang GM; Choi HY; Cho SG
    Int J Mol Sci; 2016 Feb; 17(2):256. PubMed ID: 26907255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iPSC technology-based regenerative therapy for diabetes.
    Kondo Y; Toyoda T; Inagaki N; Osafune K
    J Diabetes Investig; 2018 Mar; 9(2):234-243. PubMed ID: 28609558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing.
    Yin X; Li Q; Shu Y; Wang H; Thomas B; Maxwell JT; Zhang Y
    J Biomed Sci; 2024 May; 31(1):47. PubMed ID: 38724973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery.
    Qian L; Tcw J
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling different types of diabetes using human pluripotent stem cells.
    Abdelalim EM
    Cell Mol Life Sci; 2021 Mar; 78(6):2459-2483. PubMed ID: 33242105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent technological updates and clinical applications of induced pluripotent stem cells.
    Diecke S; Jung SM; Lee J; Ju JH
    Korean J Intern Med; 2014 Sep; 29(5):547-57. PubMed ID: 25228828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents.
    Southard SM; Kotipatruni RP; Rust WL
    PLoS One; 2018; 13(9):e0203126. PubMed ID: 30183752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis of fulminant type 1 diabetes: Genes, viruses and the immune mechanism, and usefulness of patient-derived induced pluripotent stem cells for future research.
    Hosokawa Y; Hanafusa T; Imagawa A
    J Diabetes Investig; 2019 Sep; 10(5):1158-1164. PubMed ID: 31161717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease.
    Chun YS; Chaudhari P; Jang YY
    Int J Biol Sci; 2010 Dec; 6(7):796-805. PubMed ID: 21179587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling HNF1B-associated monogenic diabetes using human iPSCs reveals an early stage impairment of the pancreatic developmental program.
    El-Khairi R; Olszanowski E; Muraro D; Madrigal P; Tilgner K; Chhatriwala M; Vyas S; Chia CY; Vallier L; Rodríguez-Seguí SA
    Stem Cell Reports; 2021 Sep; 16(9):2289-2304. PubMed ID: 34450036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening.
    Pasqua M; Di Gesù R; Chinnici CM; Conaldi PG; Francipane MG
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine.
    Silva MC; Haggarty SJ
    Ann N Y Acad Sci; 2020 Jul; 1471(1):18-56. PubMed ID: 30875083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application Prospect of Induced Pluripotent Stem Cells in Organoids and Cell Therapy.
    Zhang T; Qian C; Song M; Tang Y; Zhou Y; Dong G; Shen Q; Chen W; Wang A; Shen S; Zhao Y; Lu Y
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the induced pluripotent stem cell-based skin regeneration.
    Choudhury S; Surendran N; Das A
    Wound Repair Regen; 2021 Sep; 29(5):697-710. PubMed ID: 33970525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing Human Pluripotent Stem Cell-Derived Pancreatic In Vitro Models for High-Throughput Toxicity Testing and Diabetes Drug Discovery.
    Ching C; Iich E; Teo AKK
    Handb Exp Pharmacol; 2023; 281():301-332. PubMed ID: 37306817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers.
    George MN; Leavens KF; Gadue P
    Front Endocrinol (Lausanne); 2021; 12():682625. PubMed ID: 34149620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monogenic Diabetes Modeling:
    Burgos JI; Vallier L; Rodríguez-Seguí SA
    Front Endocrinol (Lausanne); 2021; 12():692596. PubMed ID: 34295307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances.
    Madkor HR; Abd El-Aziz MK; Abd El-Maksoud MS; Ibrahim IM; Ali FEM
    Curr Diabetes Rev; 2024 Jan; ():. PubMed ID: 38173073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy.
    Dai S; Qiu L; Veeraraghavan VP; Sheu CL; Mony U
    Curr Stem Cell Res Ther; 2024; 19(6):809-819. PubMed ID: 37291782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming the challenges of scalable iPSC generation in translation medicine.
    Liu DH; Tseng HC; Lee MS; Chiou GY; Wang CT; Lin YY; Lai WY; Liu YH; Wang CY; Lee CY; Kao CL; Chen CF; Chien Y
    J Chin Med Assoc; 2024 Feb; 87(2):163-170. PubMed ID: 38132887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.