These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26907284)

  • 1. UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes--A Case Study from the CarboZALF Experimental Area.
    Wehrhan M; Rauneker P; Sommer M
    Sensors (Basel); 2016 Feb; 16(2):255. PubMed ID: 26907284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis.
    Duan B; Fang S; Zhu R; Wu X; Wang S; Gong Y; Peng Y
    Front Plant Sci; 2019; 10():204. PubMed ID: 30873194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evapotranspiration Estimation with Small UAVs in Precision Agriculture.
    Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices.
    Zhang Y; Han W; Niu X; Li G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status.
    Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing soil CO
    Rossi FS; Della-Silva JL; Teodoro LPR; Teodoro PE; Santana DC; Baio FHR; Morinigo WB; Crusiol LGT; La Scala N; da Silva CA
    Sci Rep; 2024 Aug; 14(1):20277. PubMed ID: 39217189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages.
    Dai Y; Yu S; Ma T; Ding J; Chen K; Zeng G; Xie A; He P; Peng S; Zhang M
    Front Plant Sci; 2024; 15():1328834. PubMed ID: 38774220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of vegetation/soil indices in shaded and sunlit pixels and evaluation of different shadow compensation methods using UAV high-resolution imagery over vineyards.
    Aboutalebi M; Torres-Rua AF; McKee M; Kustas W; Nieto H; Coopmans C
    Proc SPIE Int Soc Opt Eng; 2018 Jul; 10664():. PubMed ID: 31086430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral Imagery.
    Ostos-Garrido FJ; de Castro AI; Torres-Sánchez J; Pistón F; Peña JM
    Front Plant Sci; 2019; 10():948. PubMed ID: 31396251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture.
    Maes WH; Steppe K
    Trends Plant Sci; 2019 Feb; 24(2):152-164. PubMed ID: 30558964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles.
    Jenal A; Bareth G; Bolten A; Kneer C; Weber I; Bongartz J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images.
    Qi H; Zhu B; Wu Z; Liang Y; Li J; Wang L; Chen T; Lan Y; Zhang L
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating UAV-Based Remote Sensing for Hay Yield Estimation.
    Lee K; Sudduth KA; Zhou J
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms.
    Wei G; Li Y; Zhang Z; Chen Y; Chen J; Yao Z; Lao C; Chen H
    PeerJ; 2020; 8():e9087. PubMed ID: 32377459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.