BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26907410)

  • 1. Spectral fusing Gabor domain optical coherence microscopy.
    Meemon P; Widjaja J; Rolland JP
    Opt Lett; 2016 Feb; 41(3):508-11. PubMed ID: 26907410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
    Meemon P; Lenaphet Y; Widjaja J
    Appl Opt; 2021 Mar; 60(7):2069-2076. PubMed ID: 33690300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed processing architecture for spectral-domain optical coherence microscopy.
    Chelliyil RG; Ralston TS; Marks DL; Boppart SA
    J Biomed Opt; 2008; 13(4):044013. PubMed ID: 19021341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.
    Rolland JP; Canavesi C; Tankam P; Cogliati A; Lanis M; Santhanam AP
    Stud Health Technol Inform; 2016; 220():335-40. PubMed ID: 27046601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.
    Tankam P; Santhanam AP; Lee KS; Won J; Canavesi C; Rolland JP
    J Biomed Opt; 2014 Jul; 19(7):71410. PubMed ID: 24695868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy.
    Pache C; Bocchio NL; Bouwens A; Villiger M; Berclaz C; Goulley J; Gibson MI; Santschi C; Lasser T
    Opt Express; 2012 Sep; 20(19):21385-99. PubMed ID: 23037262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a liquid lens enabled in vivo optical coherence microscope.
    Murali S; Meemon P; Lee KS; Kuhn WP; Thompson KP; Rolland JP
    Appl Opt; 2010 Jun; 49(16):D145-56. PubMed ID: 20517356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Assessment of Soft Contact Lens Edge-Thickness.
    Tankam P; Won J; Canavesi C; Cox I; Rolland JP
    Optom Vis Sci; 2016 Aug; 93(8):987-96. PubMed ID: 27232902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gabor fusion master slave optical coherence tomography.
    Cernat R; Bradu A; Israelsen NM; Bang O; Rivet S; Keane PA; Heath DG; Rajendram R; Podoleanu A
    Biomed Opt Express; 2017 Feb; 8(2):813-827. PubMed ID: 28270987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computed optical coherence microscopy of mouse brain ex vivo.
    Wu M; Small DM; Nishimura N; Adie SG
    J Biomed Opt; 2019 Nov; 24(11):1-18. PubMed ID: 31773937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric optical coherence microscopy with a high space-bandwidth-
    Liu S; Mulligan JA; Adie SG
    Biomed Opt Express; 2018 Jul; 9(7):3137-3152. PubMed ID: 29984088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues.
    Zhou C; Cohen DW; Wang Y; Lee HC; Mondelblatt AE; Tsai TH; Aguirre AD; Fujimoto JG; Connolly JL
    Cancer Res; 2010 Dec; 70(24):10071-9. PubMed ID: 21056988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-light Fourier-domain optical-coherence microscopy with linear k-sampling using second-harmonic generation.
    Kolenderska SM; Wilczyński G; Wojtkowski M
    Opt Lett; 2015 Aug; 40(15):3540-3. PubMed ID: 26258352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D in vivo imaging with extended-focus optical coherence microscopy.
    Chen Y; Trinh LA; Fingler J; Fraser SE
    J Biophotonics; 2017 Nov; 10(11):1411-1420. PubMed ID: 28417564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh speed spectral-domain optical coherence microscopy.
    Lee HC; Liu JJ; Sheikine Y; Aguirre AD; Connolly JL; Fujimoto JG
    Biomed Opt Express; 2013; 4(8):1236-54. PubMed ID: 24009989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation.
    Fan C; Yao G
    Opt Express; 2010 Mar; 18(7):7281-7. PubMed ID: 20389749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.