BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26907571)

  • 1. Metabolic targets for potential prostate cancer therapeutics.
    Twum-Ampofo J; Fu DX; Passaniti A; Hussain A; Siddiqui MM
    Curr Opin Oncol; 2016 May; 28(3):241-7. PubMed ID: 26907571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots.
    Costello LC; Franklin RB
    Mol Cancer; 2006 May; 5():17. PubMed ID: 16700911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues.
    Singh KK; Desouki MM; Franklin RB; Costello LC
    Mol Cancer; 2006 Apr; 5():14. PubMed ID: 16595004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy.
    Pertega-Gomes N; Felisbino S; Massie CE; Vizcaino JR; Coelho R; Sandi C; Simoes-Sousa S; Jurmeister S; Ramos-Montoya A; Asim M; Tran M; Oliveira E; Lobo da Cunha A; Maximo V; Baltazar F; Neal DE; Fryer LG
    J Pathol; 2015 Aug; 236(4):517-30. PubMed ID: 25875424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy.
    Costello LC; Franklin RB
    Oncology; 2000 Nov; 59(4):269-82. PubMed ID: 11096338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer.
    Costello LC; Franklin RB
    Prostate; 1998 Jun; 35(4):285-96. PubMed ID: 9609552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas?
    Gonzalez-Menendez P; Hevia D; Mayo JC; Sainz RM
    Int J Cancer; 2018 Jun; 142(12):2414-2424. PubMed ID: 29159872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconnection of Estrogen/Testosterone Metabolism and Mevalonate Pathway in Breast and Prostate Cancers.
    Mokarram P; Alizadeh J; Razban V; Barazeh M; Solomon C; Kavousipour S
    Curr Mol Pharmacol; 2017; 10(2):86-114. PubMed ID: 26758947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PARP Inhibitors in Prostate Cancer.
    Ramakrishnan Geethakumari P; Schiewer MJ; Knudsen KE; Kelly WK
    Curr Treat Options Oncol; 2017 Jun; 18(6):37. PubMed ID: 28540598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Metabolic Phenotype of Prostate Cancer.
    Eidelman E; Twum-Ampofo J; Ansari J; Siddiqui MM
    Front Oncol; 2017; 7():131. PubMed ID: 28674679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of metabolic inhibitors on ATP and citrate content in PC3 prostate cancer cells.
    Matheson BK; Adams JL; Zou J; Patel R; Franklin RB
    Prostate; 2007 Aug; 67(11):1211-8. PubMed ID: 17525933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer: morphologic and molecular backgrounds and future promises.
    Santoni M; Scarpelli M; Mazzucchelli R; Lopez-Beltran A; Cheng L; Cascinu S; Montironi R
    J Biol Regul Homeost Agents; 2014; 28(4):555-63. PubMed ID: 25620167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaminase isoenzymes in the metabolic therapy of cancer.
    Matés JM; Campos-Sandoval JA; Márquez J
    Biochim Biophys Acta Rev Cancer; 2018 Dec; 1870(2):158-164. PubMed ID: 30053497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic deregulation in prostate cancer.
    Srihari S; Kwong R; Tran K; Simpson R; Tattam P; Smith E
    Mol Omics; 2018 Oct; 14(5):320-329. PubMed ID: 30215656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1,25(OH)
    Abu El Maaty MA; Alborzinia H; Khan SJ; Büttner M; Wölfl S
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1618-1630. PubMed ID: 28651973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 5 alpha reductase inhibitors on androgen-dependent human prostatic carcinoma cells.
    Festuccia C; Angelucci A; Gravina GL; Muzi P; Vicentini C; Bologna M
    J Cancer Res Clin Oncol; 2005 Apr; 131(4):243-54. PubMed ID: 15650886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetyl-L-Carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies.
    Baci D; Bruno A; Cascini C; Gallazzi M; Mortara L; Sessa F; Pelosi G; Albini A; Noonan DM
    J Exp Clin Cancer Res; 2019 Nov; 38(1):464. PubMed ID: 31718684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fat side of prostate cancer.
    Zadra G; Photopoulos C; Loda M
    Biochim Biophys Acta; 2013 Oct; 1831(10):1518-32. PubMed ID: 23562839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting prostate cancer metabolism: From metabolites to disease and therapy.
    Cardoso HJ; Carvalho TMA; Fonseca LRS; Figueira MI; Vaz CV; Socorro S
    Med Res Rev; 2021 May; 41(3):1499-1538. PubMed ID: 33274768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.