BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26907571)

  • 21. HepaCAM‑PIK3CA axis regulates the reprogramming of glutamine metabolism to inhibit prostate cancer cell proliferation.
    He Z; Gao Y; Li T; Yu C; Ou L; Luo C
    Int J Oncol; 2022 Apr; 60(4):. PubMed ID: 35191516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Interplay Between Prostate Cancer Genomics, Metabolism, and the Epigenome: Perspectives and Future Prospects.
    Singh R; Mills IG
    Front Oncol; 2021; 11():704353. PubMed ID: 34660272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Mitochondrial Metabolism in Prostate Cancer with Triterpenoids.
    Mamouni K; Kallifatidis G; Lokeshwar BL
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33671107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of lipidomic profiles associated with drug-resistant prostate cancer cells.
    Ingram LM; Finnerty MC; Mansoura M; Chou CW; Cummings BS
    Lipids Health Dis; 2021 Feb; 20(1):15. PubMed ID: 33596934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances and Implication of Bioengineered Nanomaterials in Cancer Theranostics.
    Rai A; Noor S; Ahmad SI; Alajmi MF; Hussain A; Abbas H; Hasan GM
    Medicina (Kaunas); 2021 Jan; 57(2):. PubMed ID: 33494239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylcrotonoyl-CoA Carboxylase 2 Promotes Proliferation, Migration and Invasion and Inhibits Apoptosis of Prostate Cancer Cells Through Regulating GLUD1-P38 MAPK Signaling Pathway.
    He J; Mao Y; Huang W; Li M; Zhang H; Qing Y; Lu S; Xiao H; Li K
    Onco Targets Ther; 2020; 13():7317-7327. PubMed ID: 32801758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial PAK6 inhibits prostate cancer cell apoptosis
    Li T; Li Y; Liu T; Hu B; Li J; Liu C; Liu T; Li F
    Theranostics; 2020; 10(6):2571-2586. PubMed ID: 32194820
    [No Abstract]   [Full Text] [Related]  

  • 28. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease.
    Cui J; Wang L; Ren X; Zhang Y; Zhang H
    Front Physiol; 2019; 10():595. PubMed ID: 31178748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transporter and protease mediated delivery of platinum complexes for precision oncology.
    Hambley TW
    J Biol Inorg Chem; 2019 Jun; 24(4):457-466. PubMed ID: 31093745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolomics Contributions to the Discovery of Prostate Cancer Biomarkers.
    Gómez-Cebrián N; Rojas-Benedicto A; Albors-Vaquer A; López-Guerrero JA; Pineda-Lucena A; Puchades-Carrasco L
    Metabolites; 2019 Mar; 9(3):. PubMed ID: 30857149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Lactate Metabolism in Prostate Cancer Progression and Metastases Revealed by Dual-Agent Hyperpolarized
    Bok R; Lee J; Sriram R; Keshari K; Sukumar S; Daneshmandi S; Korenchan DE; Flavell RR; Vigneron DB; Kurhanewicz J; Seth P
    Cancers (Basel); 2019 Feb; 11(2):. PubMed ID: 30813322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperpolarized
    Vishwanath V; Mayer D; Fu D; Wnorowski A; Siddiqui MM
    Transl Androl Urol; 2018 Oct; 7(5):855-863. PubMed ID: 30456188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linking cellular metabolism and metabolomics to risk-stratification of prostate cancer clinical aggressiveness and potential therapeutic pathways.
    Eidelman E; Tripathi H; Fu DX; Siddiqui MM
    Transl Androl Urol; 2018 Sep; 7(Suppl 4):S490-S497. PubMed ID: 30363493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Metabolic Phenotype of Prostate Cancer.
    Eidelman E; Twum-Ampofo J; Ansari J; Siddiqui MM
    Front Oncol; 2017; 7():131. PubMed ID: 28674679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green Tea Catechins for Prostate Cancer Prevention: Present Achievements and Future Challenges.
    Naponelli V; Ramazzina I; Lenzi C; Bettuzzi S; Rizzi F
    Antioxidants (Basel); 2017 Apr; 6(2):. PubMed ID: 28379200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic targets for potential prostate cancer therapeutics.
    Twum-Ampofo J; Fu DX; Passaniti A; Hussain A; Siddiqui MM
    Curr Opin Oncol; 2016 May; 28(3):241-7. PubMed ID: 26907571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots.
    Costello LC; Franklin RB
    Mol Cancer; 2006 May; 5():17. PubMed ID: 16700911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues.
    Singh KK; Desouki MM; Franklin RB; Costello LC
    Mol Cancer; 2006 Apr; 5():14. PubMed ID: 16595004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy.
    Pertega-Gomes N; Felisbino S; Massie CE; Vizcaino JR; Coelho R; Sandi C; Simoes-Sousa S; Jurmeister S; Ramos-Montoya A; Asim M; Tran M; Oliveira E; Lobo da Cunha A; Maximo V; Baltazar F; Neal DE; Fryer LG
    J Pathol; 2015 Aug; 236(4):517-30. PubMed ID: 25875424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.