BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26907668)

  • 21. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods.
    Hegde AH; Prashanth SN; Seetharamappa J
    J Pharm Biomed Anal; 2012 Apr; 63():40-6. PubMed ID: 22349882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the understanding of DNA-propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches.
    Grueso E; Kuliszewska E; Prado-Gotor R; Perez-Tejeda P; Roldan E
    Phys Chem Chem Phys; 2013 Dec; 15(46):20064-74. PubMed ID: 24153408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the toxicity of ionic liquids on trypsin: A mechanism study.
    Fan Y; Dong X; Yan L; Li D; Hua S; Hu C; Pan C
    Chemosphere; 2016 Apr; 148():241-7. PubMed ID: 26807945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imidazolium-based ionic liquids binding to DNA: Mechanical effects and thermodynamics of the interactions.
    Andrade UMS; Castro ASB; Oliveira PHF; da Silva LHM; Rocha MS
    Int J Biol Macromol; 2022 Aug; 214():500-511. PubMed ID: 35714872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches.
    Ahmad I; Ahmad A; Ahmad M
    Phys Chem Chem Phys; 2016 Mar; 18(9):6476-85. PubMed ID: 26862600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques.
    Wu D; Chen Z
    Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multi-spectroscopic approach to investigate the interaction of prodigiosin with ct-DNA.
    Han L; Zhou Y; Huang X; Xiao M; Zhou L; Zhou J; Wang A; Shen J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():497-502. PubMed ID: 24440841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An abnormal resonance light scattering arising from ionic-liquid/DNA/ethidium interactions.
    Cheng DH; Chen XW; Wang JH; Fang ZL
    Chemistry; 2007; 13(17):4833-9. PubMed ID: 17366513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids?
    Chandran A; Ghoshdastidar D; Senapati S
    J Am Chem Soc; 2012 Dec; 134(50):20330-9. PubMed ID: 23181803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic studies of DNA interactions with food colorant indigo carmine with the use of ethidium bromide as a fluorescence probe.
    Ma Y; Zhang G; Pan J
    J Agric Food Chem; 2012 Oct; 60(43):10867-75. PubMed ID: 23057637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding studies of terbutaline sulfate to calf thymus DNA using multispectroscopic and molecular docking techniques.
    Bi S; Zhao T; Wang Y; Zhou H; Pang B; Gu T
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():921-7. PubMed ID: 26123508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence spectroscopic analysis of the interaction of papain with ionic liquids.
    Fan Y; Yan J; Zhang S; Li J; Chen D; Duan P
    Appl Biochem Biotechnol; 2012 Oct; 168(3):592-603. PubMed ID: 22798189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: a contrast to the mode of binding with flavonoids having additional hydroxyl groups.
    Jana B; Senapati S; Ghosh D; Bose D; Chattopadhyay N
    J Phys Chem B; 2012 Jan; 116(1):639-45. PubMed ID: 22128894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential pulse voltammetric studies of ethidium bromide binding to DNA.
    Minasyan SH; Tavadyan LA; Antonyan AP; Davtyan HG; Parsadanyan MA; Vardevanyan PO
    Bioelectrochemistry; 2006 Jan; 68(1):48-55. PubMed ID: 15914092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of ionic liquids ions with natural cyclodextrins.
    Ondo D; Tkadlecová M; Dohnal V; Rak J; Kvíčala J; Lehmann JK; Heintz A; Ignatiev N
    J Phys Chem B; 2011 Sep; 115(34):10285-97. PubMed ID: 21786823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids.
    Bisht M; Kumar A; Venkatesu P
    Int J Biol Macromol; 2015 Nov; 81():1074-81. PubMed ID: 26410812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques.
    Shahabadi N; Fili SM; Kheirdoosh F
    J Photochem Photobiol B; 2013 Nov; 128():20-6. PubMed ID: 23994435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of Lysozyme with Monocationic and Dicationic Ionic Liquids: Toward Finding a Suitable Medium for Biomacromolecules.
    Islam MM; Barik S; Preeyanka N; Sarkar M
    J Phys Chem B; 2020 Feb; 124(6):961-973. PubMed ID: 31923356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The thermodynamics of drug-DNA interactions: ethidium bromide and propidium iodide.
    Chou WY; Marky LA; Zaunczkowski D; Breslauer KJ
    J Biomol Struct Dyn; 1987 Oct; 5(2):345-59. PubMed ID: 3271479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: a complete biophysical characterization.
    Nisha CK; Manorama SV; Ganguli M; Maiti S; Kizhakkedathu JN
    Langmuir; 2004 Mar; 20(6):2386-96. PubMed ID: 15835700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.