These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1155 related articles for article (PubMed ID: 26907723)

  • 21. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.
    Guo S; Wang E
    Acc Chem Res; 2011 Jul; 44(7):491-500. PubMed ID: 21612197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry.
    Chen XM; Wu GH; Jiang YQ; Wang YR; Chen X
    Analyst; 2011 Nov; 136(22):4631-40. PubMed ID: 21975368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures.
    Zhao C; Qu K; Xu C; Ren J; Qu X
    Nucleic Acids Res; 2011 May; 39(9):3939-48. PubMed ID: 21227925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2-Dimensional graphene as a route for emergence of additional dimension nanomaterials.
    Patra S; Roy E; Tiwari A; Madhuri R; Sharma PK
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):8-27. PubMed ID: 26992844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review of Carbon and Graphene Quantum Dots for Sensing.
    Li M; Chen T; Gooding JJ; Liu J
    ACS Sens; 2019 Jul; 4(7):1732-1748. PubMed ID: 31267734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: more water molecules released.
    Zhao C; Ren J; Qu X
    Chemistry; 2008; 14(18):5435-9. PubMed ID: 18478516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impeded repair of abasic site damaged lesions in DNA adsorbed over functionalized multiwalled carbon nanotube and graphene oxide.
    Kumari R; Mondal T; Bhowmick AK; Das P
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jun; 803-804():39-46. PubMed ID: 27265379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications.
    Yang G; Kong H; Chen Y; Liu B; Zhu D; Guo L; Wei G
    Carbohydr Polym; 2022 Mar; 279():118947. PubMed ID: 34980360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanomaterials combined with metal nanoparticles for theranostic applications.
    Modugno G; Ménard-Moyon C; Prato M; Bianco A
    Br J Pharmacol; 2015 Feb; 172(4):975-91. PubMed ID: 25323135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes.
    Peng Y; Wang X; Xiao Y; Feng L; Zhao C; Ren J; Qu X
    J Am Chem Soc; 2009 Sep; 131(38):13813-8. PubMed ID: 19736925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots.
    Chen X; Zhou X; Han T; Wu J; Zhang J; Guo S
    ACS Nano; 2013 Jan; 7(1):531-7. PubMed ID: 23244198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation.
    Li X; Peng Y; Ren J; Qu X
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19658-63. PubMed ID: 17167055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials.
    Kotchey GP; Hasan SA; Kapralov AA; Ha SH; Kim K; Shvedova AA; Kagan VE; Star A
    Acc Chem Res; 2012 Oct; 45(10):1770-81. PubMed ID: 22824066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between Carbon Nanomaterials and Biomolecules.
    Han X; Li S; Peng Z; Al-Yuobi AO; Omar Bashammakh AS; El-Shahawi MS; Leblanc RM
    J Oleo Sci; 2016; 65(1):1-7. PubMed ID: 26666276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon Nanostructures As Antibacterials and Active Food-Packaging Materials: A Review.
    Raul PK; Thakuria A; Das B; Devi RR; Tiwari G; Yellappa C; Kamboj DV
    ACS Omega; 2022 Apr; 7(14):11555-11559. PubMed ID: 35449978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aptamer-assembled nanomaterials for biosensing and biomedical applications.
    Kong RM; Zhang XB; Chen Z; Tan W
    Small; 2011 Sep; 7(17):2428-36. PubMed ID: 21726041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyaluronic Acid-Conjugated Carbon Nanomaterials for Enhanced Tumour Targeting Ability.
    Kearns O; Camisasca A; Giordani S
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly energetic compositions based on functionalized carbon nanomaterials.
    Yan QL; Gozin M; Zhao FQ; Cohen A; Pang SP
    Nanoscale; 2016 Mar; 8(9):4799-851. PubMed ID: 26880518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic applications of carbon nanomaterials in renal cancer.
    Priyam J; Saxena U
    Biotechnol Lett; 2023 Dec; 45(11-12):1395-1416. PubMed ID: 37864745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.