BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26907857)

  • 1. Self-assembled particle membranes for in situ concentration and chemostat-like cultivation of microorganisms on a chip.
    Lee J; Kim M; Park J; Kim T
    Lab Chip; 2016 Mar; 16(6):1072-80. PubMed ID: 26907857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Culture and Selective Extraction of Target Microbial Cells in Self-Assembled Particle Membrane-Integrated Microfluidic Bioreactor Array.
    Lee J; Park J; Kim T
    Anal Chem; 2019 May; 91(9):6162-6171. PubMed ID: 30931565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors.
    Kim M; Lim JW; Kim HJ; Lee SK; Lee SJ; Kim T
    Biosens Bioelectron; 2015 Mar; 65():257-64. PubMed ID: 25461167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic approach to the formation of internally porous polymer particles by solvent extraction.
    Watanabe T; G Lopez C; Douglas JF; Ono T; Cabral JT
    Langmuir; 2014 Mar; 30(9):2470-9. PubMed ID: 24568261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic serial dilution cell-based assay for analyzing drug dose response over a wide concentration range.
    Sugiura S; Hattori K; Kanamori T
    Anal Chem; 2010 Oct; 82(19):8278-82. PubMed ID: 20822164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and selective concentration of microparticles in an optoelectrofluidic platform.
    Hwang H; Park JK
    Lab Chip; 2009 Jan; 9(2):199-206. PubMed ID: 19107274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic static droplet array for analyzing microbial communication on a population gradient.
    Jeong HH; Jin SH; Lee BJ; Kim T; Lee CS
    Lab Chip; 2015 Feb; 15(3):889-99. PubMed ID: 25494004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film.
    Kim M; Jia M; Kim T
    Analyst; 2013 Mar; 138(5):1370-8. PubMed ID: 23293785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles.
    Kovarik ML; Jacobson SC
    Anal Chem; 2008 Feb; 80(3):657-64. PubMed ID: 18179245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term and Programmable Bacterial Subculture in Completely Automated Microchemostats.
    Kim M; Bae J; Kim T
    Anal Chem; 2017 Sep; 89(18):9676-9684. PubMed ID: 28825290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration.
    Hu YL; Wang C; Wu ZQ; Xu JJ; Chen HY; Xia XH
    Electrophoresis; 2011 Nov; 32(23):3424-30. PubMed ID: 22057434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.
    Choi J; Kang M; Jung JH
    Sci Rep; 2015 Nov; 5():15983. PubMed ID: 26522006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration.
    Kim M; Kim T
    Analyst; 2013 Oct; 138(20):6007-15. PubMed ID: 23951567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels.
    Choi E; Chang HK; Lim CY; Kim T; Park J
    Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay.
    Sugiura S; Edahiro J; Kikuchi K; Sumaru K; Kanamori T
    Biotechnol Bioeng; 2008 Aug; 100(6):1156-65. PubMed ID: 18553395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.