BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26908070)

  • 1. A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds.
    Li Y; Zhou YX; Ma X; Jiang HL
    Chem Commun (Camb); 2016 Mar; 52(22):4199-202. PubMed ID: 26908070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MOF-derived Co-CoO@N-doped porous carbon for efficient tandem catalysis: dehydrogenation of ammonia borane and hydrogenation of nitro compounds.
    Ma X; Zhou YX; Liu H; Li Y; Jiang HL
    Chem Commun (Camb); 2016 Jun; 52(49):7719-22. PubMed ID: 27241630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Organic Framework-Templated Catalyst: Synergy in Multiple Sites for Catalytic CO
    Ding M; Chen S; Liu XQ; Sun LB; Lu J; Jiang HL
    ChemSusChem; 2017 May; 10(9):1898-1903. PubMed ID: 28322516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From metal-organic framework to intrinsically fluorescent carbon nanodots.
    Amali AJ; Hoshino H; Wu C; Ando M; Xu Q
    Chemistry; 2014 Jul; 20(27):8279-82. PubMed ID: 24889063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient and Chemoselective Hydrogenation of Nitro Compounds into Amines by Nitrogen-Doped Porous Carbon-Supported Co/Ni Bimetallic Nanoparticles.
    Shen Z; Hong L; Zheng B; Wang G; Zhang B; Wang Z; Zhan F; Shen S; Yun R
    Inorg Chem; 2021 Nov; 60(21):16834-16839. PubMed ID: 34693707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water.
    Rai RK; Mahata A; Mukhopadhyay S; Gupta S; Li PZ; Nguyen KT; Zhao Y; Pathak B; Singh SK
    Inorg Chem; 2014 Mar; 53(6):2904-9. PubMed ID: 24564248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-organic frameworks as selectivity regulators for hydrogenation reactions.
    Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z
    Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of Metal Nanoparticles within Metal-Organic Frameworks for the Reduction of Nitro Compounds.
    Navalón S; Álvaro M; Dhakshinamoorthy A; García H
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31443444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds.
    Trandafir MM; Florea M; Neaţu F; Primo A; Parvulescu VI; García H
    ChemSusChem; 2016 Jul; 9(13):1565-9. PubMed ID: 27246529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-free transfer hydrogenation of nitroarenes in water with vasicine: revelation of organocatalytic facet of an abundant alkaloid.
    Sharma S; Kumar M; Kumar V; Kumar N
    J Org Chem; 2014 Oct; 79(19):9433-9. PubMed ID: 25215900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of magnetite-organic complex nanoparticles by metal-reducing bacteria.
    Kim Y; Jang H; Suh Y; Roh Y
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7242-5. PubMed ID: 22103167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite.
    Yuan CX; Fan YR; Tao-Zhang ; Guo HX; Zhang JX; Wang YL; Shan DL; Lu XQ
    Biosens Bioelectron; 2014 Aug; 58():85-91. PubMed ID: 24632133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroatom-doped Carbon Spheres from Hierarchical Hollow Covalent Organic Framework Precursors for Metal-Free Catalysis.
    Li L; Li L; Cui C; Fan H; Wang R
    ChemSusChem; 2017 Dec; 10(24):4921-4926. PubMed ID: 28664675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation of Functionalized Nitroarenes Catalyzed by Single-Phase Pyrite FeS
    Duan Y; Dong X; Song T; Wang Z; Xiao J; Yuan Y; Yang Y
    ChemSusChem; 2019 Oct; 12(20):4636-4644. PubMed ID: 31411806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds.
    Vidal JD; Climent MJ; Corma A; Concepcion DP; Iborra S
    ChemSusChem; 2017 Jan; 10(1):119-128. PubMed ID: 27860418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic decoupling of surface Fe3+ in magnetite nanoparticles upon nitrocatechol-anchored dispersant binding.
    Amstad E; Fischer H; Gehring AU; Textor M; Reimhult E
    Chemistry; 2011 Jun; 17(27):7396-8. PubMed ID: 21594913
    [No Abstract]   [Full Text] [Related]  

  • 17. Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles.
    Situ SF; Samia AC
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20154-63. PubMed ID: 25347201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols.
    Liu XL; Li YS; Zhu GQ; Ban YJ; Xu LY; Yang WS
    Angew Chem Int Ed Engl; 2011 Nov; 50(45):10636-9. PubMed ID: 21898739
    [No Abstract]   [Full Text] [Related]  

  • 19. Supported polyethylene glycol stabilized platinum nanoparticles for chemoselective hydrogenation of halonitrobenzenes in scCO2.
    Cheng H; Meng X; He L; Lin W; Zhao F
    J Colloid Interface Sci; 2014 Feb; 415():1-6. PubMed ID: 24267322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure Evolution and Hydrogenation Performance of IrFe Bimetallic Nanomaterials.
    Lu T; Lin J; Liu X; Wang X; Zhang T
    Langmuir; 2016 Mar; 32(11):2771-9. PubMed ID: 26940131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.