BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26908223)

  • 1. A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice.
    Li P; Liu L; Xiao H; Zhang W; Wang L; Tang B
    J Am Chem Soc; 2016 Mar; 138(9):2893-6. PubMed ID: 26908223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of imidazopyrazinone red-chemiluminescent probes for detecting superoxide anions via a chemiluminescence resonance energy transfer method.
    Teranishi K
    Luminescence; 2007; 22(2):147-56. PubMed ID: 17089347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation.
    Cui D; Li J; Zhao X; Pu K; Zhang R
    Adv Mater; 2020 Feb; 32(6):e1906314. PubMed ID: 31833600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence Detection of Superoxide Anion Using Aequorin.
    Rahmani H; Ghavamipour F; Sajedi RH
    Anal Chem; 2019 Oct; 91(20):12768-12774. PubMed ID: 31500415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays.
    Levi J; De A; Cheng Z; Gambhir SS
    J Am Chem Soc; 2007 Oct; 129(39):11900-1. PubMed ID: 17850082
    [No Abstract]   [Full Text] [Related]  

  • 6. Design of a New Near-Infrared Ratiometric Fluorescent Nanoprobe for Real-Time Imaging of Superoxide Anions and Hydroxyl Radicals in Live Cells and in Situ Tracing of the Inflammation Process in Vivo.
    Liu R; Zhang L; Chen Y; Huang Z; Huang Y; Zhao S
    Anal Chem; 2018 Apr; 90(7):4452-4460. PubMed ID: 29513523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coelenterazine-based luminescence assay to quantify high-molecular-weight superoxide anion scavenger activities.
    Saleh L; Plieth C
    Nat Protoc; 2010 Sep; 5(10):1635-41. PubMed ID: 20885375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Investigation of the Chemiluminescent Properties of a Dibrominated Coelenterazine Analog.
    Sousa J; Magalhães CM; González-Berdullas P; Esteves da Silva JCG; Pinto da Silva L
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coelenterazine analogs as chemiluminescent probe for superoxide anion.
    Teranishi K; Shimomura O
    Anal Biochem; 1997 Jun; 249(1):37-43. PubMed ID: 9193706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells.
    Nishinaka Y; Aramaki Y; Yoshida H; Masuya H; Sugawara T; Ichimori Y
    Biochem Biophys Res Commun; 1993 Jun; 193(2):554-9. PubMed ID: 8390246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitroxyl radicals remarkably enhanced the superoxide anion radical-induced chemiluminescence of Cypridina luciferin analogues.
    Takeshita K; Okazaki S; Itoda A
    Anal Chem; 2013 Jul; 85(14):6833-9. PubMed ID: 23772676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reestimation of Cypridina luciferin analogs (MCLA) as a chemiluminescence probe to detect active oxygen species--cautionary note for use of MCLA.
    Kambayashi Y; Ogino K
    J Toxicol Sci; 2003 Aug; 28(3):139-48. PubMed ID: 12974606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species.
    Zhen X; Zhang C; Xie C; Miao Q; Lim KL; Pu K
    ACS Nano; 2016 Jun; 10(6):6400-9. PubMed ID: 27299477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Detection of singlet oxygen and superoxide anion with the fluorescence of FCLA].
    Wei YC; Luo SM; Xu W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2633-5. PubMed ID: 19271506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive detection of superoxide anion released from living cells using a porous Pt-Pd decorated enzymatic sensor.
    Zhu X; Liu T; Zhao H; Shi L; Li X; Lan M
    Biosens Bioelectron; 2016 May; 79():449-56. PubMed ID: 26745791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclodextrin-bound 6-(4-methoxyphenyl)imidazo[1,2-alpha+/-]pyrazin-3(7H)-ones with fluorescein as green chemiluminescent probes for superoxide anions.
    Teranishi K; Nishiguchi T
    Anal Biochem; 2004 Feb; 325(2):185-95. PubMed ID: 14751253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Chemiluminescence Polymer Dots for Ultrasensitive In Vivo Imaging of Intrinsic Reactive Oxygen Species in Mice.
    Cai L; Deng L; Huang X; Ren J
    Anal Chem; 2018 Jun; 90(11):6929-6935. PubMed ID: 29732881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells.
    Du F; Min Y; Zeng F; Yu C; Wu S
    Small; 2014 Mar; 10(5):964-72. PubMed ID: 24108667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of five imidazopyrazinone-type chemiluminescent superoxide probes and their application to the measurement of superoxide anion generated by Listeria monocytogenes.
    Shimomura O; Wu C; Murai A; Nakamura H
    Anal Biochem; 1998 May; 258(2):230-5. PubMed ID: 9570834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of superoxide in cells, tissues and whole organisms.
    Afanasev I
    Front Biosci (Elite Ed); 2009 Jun; 1(1):153-60. PubMed ID: 19482633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.