These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26908485)

  • 1. Creating tissues from textiles: scalable nonwoven manufacturing techniques for fabrication of tissue engineering scaffolds.
    Tuin SA; Pourdeyhimi B; Loboa EG
    Biomed Mater; 2016 Feb; 11(1):015017. PubMed ID: 26908485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of novel high surface area mushroom gilled fibers and their effects on human adipose derived stem cells under pulsatile fluid flow for tissue engineering applications.
    Tuin SA; Pourdeyhimi B; Loboa EG
    Acta Biomater; 2016 May; 36():220-30. PubMed ID: 26992369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.
    Haslauer CM; Avery MR; Pourdeyhimi B; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):1050-8. PubMed ID: 25229198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release profiles of tricalcium phosphate nanoparticles from poly(L-lactic acid) electrospun scaffolds with single component, core-sheath, or porous fiber morphologies: effects on hASC viability and osteogenic differentiation.
    Asli MM; Pourdeyhimi B; Loboa EG
    Macromol Biosci; 2012 Jul; 12(7):893-900. PubMed ID: 22648935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.
    Yang F; Murugan R; Wang S; Ramakrishna S
    Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source.
    Mellor LF; Mohiti-Asli M; Williams J; Kannan A; Dent MR; Guilak F; Loboa EG
    Tissue Eng Part A; 2015 Sep; 21(17-18):2323-33. PubMed ID: 26035347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Jenkins TL; Meehan S; Pourdeyhimi B; Little D
    Tissue Eng Part A; 2017 Sep; 23(17-18):958-967. PubMed ID: 28816097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds.
    Kanczler JM; Mirmalek-Sani SH; Hanley NA; Ivanov AL; Barry JJ; Upton C; Shakesheff KM; Howdle SM; Antonov EN; Bagratashvili VN; Popov VK; Oreffo RO
    Acta Biomater; 2009 Jul; 5(6):2063-71. PubMed ID: 19362063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous ovalbumin scaffolds with tunable properties: a resource-efficient biodegradable material for tissue engineering applications.
    Luo B; Choong C
    J Biomater Appl; 2015 Jan; 29(6):903-11. PubMed ID: 25158688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser ablation imparts controlled micro-scale pores in electrospun scaffolds for tissue engineering applications.
    McCullen SD; Gittard SD; Miller PR; Pourdeyhimi B; Narayan RJ; Loboa EG
    Ann Biomed Eng; 2011 Dec; 39(12):3021-30. PubMed ID: 21847685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel scaffold design with multi-grooved PLA fibers.
    Chung S; Gamcsik MP; King MW
    Biomed Mater; 2011 Aug; 6(4):045001. PubMed ID: 21613721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipogenic differentiation of scaffold-bound human adipose tissue-derived stem cells (hASC) for soft tissue engineering.
    Handel M; Hammer TR; Hoefer D
    Biomed Mater; 2012 Oct; 7(5):054107. PubMed ID: 22972360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.