These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 26908574)
1. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. Smith P; Ho CK; Takagi Y; Djaballah H; Shuman S mBio; 2016 Feb; 7(1):e00058-16. PubMed ID: 26908574 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Benarroch D; Smith P; Shuman S Structure; 2008 Apr; 16(4):501-12. PubMed ID: 18400173 [TBL] [Abstract][Full Text] [Related]
3. Structure-function analysis of Trypanosoma brucei RNA triphosphatase and evidence for a two-metal mechanism. Gong C; Martins A; Shuman S J Biol Chem; 2003 Dec; 278(51):50843-52. PubMed ID: 14525979 [TBL] [Abstract][Full Text] [Related]
4. Trypanosoma brucei RNA triphosphatase. Antiprotozoal drug target and guide to eukaryotic phylogeny. Ho CK; Shuman S J Biol Chem; 2001 Dec; 276(49):46182-6. PubMed ID: 11553645 [TBL] [Abstract][Full Text] [Related]
5. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. Volkov OA; Cosner CC; Brockway AJ; Kramer M; Booker M; Zhong S; Ketcherside A; Wei S; Longgood J; McCoy M; Richardson TE; Wring SA; Peel M; Klinger JD; Posner BA; De Brabander JK; Phillips MA ACS Infect Dis; 2017 Jul; 3(7):512-526. PubMed ID: 28350440 [TBL] [Abstract][Full Text] [Related]
6. Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins. Gong C; Smith P; Shuman S RNA; 2006 Aug; 12(8):1468-74. PubMed ID: 16809816 [TBL] [Abstract][Full Text] [Related]
7. Novel inhibitors of the trypanosome alternative oxidase inhibit Trypanosoma brucei brucei growth and respiration. Ott R; Chibale K; Anderson S; Chipeleme A; Chaudhuri M; Guerrah A; Colowick N; Hill GC Acta Trop; 2006 Dec; 100(3):172-84. PubMed ID: 17126803 [TBL] [Abstract][Full Text] [Related]
8. Nucleotide analogs and molecular modeling studies reveal key interactions involved in substrate recognition by the yeast RNA triphosphatase. Issur M; Despins S; Bougie I; Bisaillon M Nucleic Acids Res; 2009 Jun; 37(11):3714-22. PubMed ID: 19372271 [TBL] [Abstract][Full Text] [Related]
9. New azasterols against Trypanosoma brucei: role of 24-sterol methyltransferase in inhibitor action. Gros L; Castillo-Acosta VM; Jiménez Jiménez C; Sealey-Cardona M; Vargas S; Manuel Estévez A; Yardley V; Rattray L; Croft SL; Ruiz-Perez LM; Urbina JA; Gilbert IH; González-Pacanowska D Antimicrob Agents Chemother; 2006 Aug; 50(8):2595-601. PubMed ID: 16870747 [TBL] [Abstract][Full Text] [Related]
10. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase. Herrmann FC; Lenz M; Jose J; Kaiser M; Brun R; Schmidt TJ Molecules; 2015 Sep; 20(9):16154-69. PubMed ID: 26404225 [TBL] [Abstract][Full Text] [Related]
11. In Vitro and In Vivo Investigation of the Inhibition of Trypanosoma brucei Cell Growth by Lipophilic Bisphosphonates. Yang G; Zhu W; Kim K; Byun SY; Choi G; Wang K; Cha JS; Cho HS; Oldfield E; No JH Antimicrob Agents Chemother; 2015 Dec; 59(12):7530-9. PubMed ID: 26392508 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of the RNA triphosphatase from Takagi Y; Kuwabara N; Dang TT; Furukawa K; Ho CK J Biol Chem; 2020 Jul; 295(27):9076-9086. PubMed ID: 32381506 [TBL] [Abstract][Full Text] [Related]
13. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. de Macêdo JP; Schumann Burkard G; Niemann M; Barrett MP; Vial H; Mäser P; Roditi I; Schneider A; Bütikofer P PLoS Pathog; 2015 May; 11(5):e1004875. PubMed ID: 25946070 [TBL] [Abstract][Full Text] [Related]
14. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Yang PY; Wang M; Li L; Wu H; He CY; Yao SQ Chemistry; 2012 May; 18(21):6528-41. PubMed ID: 22488888 [TBL] [Abstract][Full Text] [Related]
15. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei. Kalidas S; Cestari I; Monnerat S; Li Q; Regmi S; Hasle N; Labaied M; Parsons M; Stuart K; Phillips MA Eukaryot Cell; 2014 Apr; 13(4):504-16. PubMed ID: 24562907 [TBL] [Abstract][Full Text] [Related]
16. Structural Insights into the Development of Cycloguanil Derivatives as Landi G; Linciano P; Borsari C; Bertolacini CP; Moraes CB; Cordeiro-da-Silva A; Gul S; Witt G; Kuzikov M; Costi MP; Pozzi C; Mangani S ACS Infect Dis; 2019 Jul; 5(7):1105-1114. PubMed ID: 31012301 [TBL] [Abstract][Full Text] [Related]
17. From on-target to off-target activity: identification and optimisation of Trypanosoma brucei GSK3 inhibitors and their characterisation as anti-Trypanosoma brucei drug discovery lead molecules. Woodland A; Grimaldi R; Luksch T; Cleghorn LA; Ojo KK; Van Voorhis WC; Brenk R; Frearson JA; Gilbert IH; Wyatt PG ChemMedChem; 2013 Jul; 8(7):1127-37. PubMed ID: 23776181 [TBL] [Abstract][Full Text] [Related]
18. Trypanocidal effects of gallic acid and related compounds. Koide T; Nose M; Inoue M; Ogihara Y; Yabu Y; Ohta N Planta Med; 1998 Feb; 64(1):27-30. PubMed ID: 9491765 [TBL] [Abstract][Full Text] [Related]