BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26908634)

  • 21. Flexible Coding of Task Rules in Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control.
    Woolgar A; Afshar S; Williams MA; Rich AN
    J Cogn Neurosci; 2015 Oct; 27(10):1895-911. PubMed ID: 26058604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Content- and task-specific dissociations of frontal activity during maintenance and manipulation in visual working memory.
    Mohr HM; Goebel R; Linden DE
    J Neurosci; 2006 Apr; 26(17):4465-71. PubMed ID: 16641225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population Dynamics of Early Visual Cortex during Working Memory.
    Rahmati M; Saber GT; Curtis CE
    J Cogn Neurosci; 2018 Feb; 30(2):219-233. PubMed ID: 28984524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.
    Jackson J; Rich AN; Williams MA; Woolgar A
    J Cogn Neurosci; 2017 Feb; 29(2):310-321. PubMed ID: 27626230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential coupling of visual cortex with default or frontal-parietal network based on goals.
    Chadick JZ; Gazzaley A
    Nat Neurosci; 2011 May; 14(7):830-2. PubMed ID: 21623362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
    Ester EF; Sutterer DW; Serences JT; Awh E
    J Neurosci; 2016 Aug; 36(31):8188-99. PubMed ID: 27488638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociable neural mechanisms underlie currently-relevant, future-relevant, and discarded working memory representations.
    Lorenc ES; Vandenbroucke ARE; Nee DE; de Lange FP; D'Esposito M
    Sci Rep; 2020 Jul; 10(1):11195. PubMed ID: 32641712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain connectivity and visual attention.
    Parks EL; Madden DJ
    Brain Connect; 2013; 3(4):317-38. PubMed ID: 23597177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ventral fronto-parietal contributions to the disruption of visual working memory storage.
    Hakun JG; Ravizza SM
    Neuroimage; 2016 Jan; 124(Pt A):783-793. PubMed ID: 26436710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features.
    Gosseries O; Yu Q; LaRocque JJ; Starrett MJ; Rose NS; Cowan N; Postle BR
    J Neurosci; 2018 May; 38(18):4357-4366. PubMed ID: 29636395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory.
    Yu Q; Panichello MF; Cai Y; Postle BR; Buschman TJ
    PLoS Biol; 2020 Sep; 18(9):e3000854. PubMed ID: 32898172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective involvement of superior frontal cortex during working memory for shapes.
    Yee LT; Roe K; Courtney SM
    J Neurophysiol; 2010 Jan; 103(1):557-63. PubMed ID: 19923241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Switch-Independent Task Representations in Frontal and Parietal Cortex.
    Loose LS; Wisniewski D; Rusconi M; Goschke T; Haynes JD
    J Neurosci; 2017 Aug; 37(33):8033-8042. PubMed ID: 28729441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frontoparietal action-oriented codes support novel instruction implementation.
    González-García C; Formica S; Wisniewski D; Brass M
    Neuroimage; 2021 Feb; 226():117608. PubMed ID: 33271270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hierarchy of attentional priority signals in human frontoparietal cortex.
    Liu T; Hou Y
    J Neurosci; 2013 Oct; 33(42):16606-16. PubMed ID: 24133264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Task Encoding across the Multiple Demand Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks Distinction.
    Crittenden BM; Mitchell DJ; Duncan J
    J Neurosci; 2016 Jun; 36(23):6147-55. PubMed ID: 27277793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible adjustment of the effective connectivity between the fronto-parietal and visual regions supports cognitive flexibility.
    Qiao L; Xu M; Luo X; Zhang L; Li H; Chen A
    Neuroimage; 2020 Oct; 220():117158. PubMed ID: 32659352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frontoparietal networks involved in categorization and item working memory.
    Braunlich K; Gomez-Lavin J; Seger CA
    Neuroimage; 2015 Feb; 107():146-162. PubMed ID: 25482265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.