BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26909124)

  • 1. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.
    Cheng Y; Ye X; Ma Z; Xie S; Wang W
    Biomicrofluidics; 2016 Jan; 10(1):014118. PubMed ID: 26909124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration.
    Cheng Y; Wang Y; Ma Z; Wang W; Ye X
    Lab Chip; 2016 Nov; 16(23):4517-4526. PubMed ID: 27792227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic on-chip bacteria separation and preconcentration.
    Ryzhkov VV; Zverev AV; Echeistov VV; Andronic M; Ryzhikov IA; Budashov IA; Eremenko AV; Kurochkin IN; Rodionov IA
    Sci Rep; 2020 Dec; 10(1):21107. PubMed ID: 33273691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis.
    Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS
    Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanical cell disruption microfluidic platform based on an on-chip micropump.
    Cheng Y; Wang Y; Wang Z; Huang L; Bi M; Xu W; Wang W; Ye X
    Biomicrofluidics; 2017 Mar; 11(2):024112. PubMed ID: 28798848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Senescence chips for ultrahigh-throughput isolation and removal of senescent cells.
    Chen Y; Mao P; Snijders AM; Wang D
    Aging Cell; 2018 Apr; 17(2):. PubMed ID: 29336105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From cooperative to uncorrelated clogging in cross-flow microfluidic membranes.
    van Zwieten R; van de Laar T; Sprakel J; Schroën K
    Sci Rep; 2018 Apr; 8(1):5687. PubMed ID: 29632362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
    Zhang X; Zhu Z; Xiang N; Long F; Ni Z
    Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID).
    Mehendale N; Sharma O; Pandey S; Paul D
    Biomed Microdevices; 2018 Aug; 20(3):75. PubMed ID: 30120596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.
    Chiu YY; Huang CK; Lu YW
    Biomicrofluidics; 2016 Jan; 10(1):011906. PubMed ID: 26858812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Radial Pillar Device (RAPID) for continuous and high-throughput separation of multi-sized particles.
    Mehendale N; Sharma O; D'Costa C; Paul D
    Biomed Microdevices; 2017 Nov; 20(1):6. PubMed ID: 29185049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolysis-free blood plasma separation.
    Son JH; Lee SH; Hong S; Park SM; Lee J; Dickey AM; Lee LP
    Lab Chip; 2014 Jul; 14(13):2287-92. PubMed ID: 24825250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clogging-free microfluidics for continuous size-based separation of microparticles.
    Yoon Y; Kim S; Lee J; Choi J; Kim RK; Lee SJ; Sul O; Lee SB
    Sci Rep; 2016 May; 6():26531. PubMed ID: 27198601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels.
    Mohamed MGA; Kheiri S; Islam S; Kumar H; Yang A; Kim K
    Lab Chip; 2019 Apr; 19(9):1621-1632. PubMed ID: 30896015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip.
    Amato L; Gu Y; Bellini N; Eaton SM; Cerullo G; Osellame R
    Lab Chip; 2012 Mar; 12(6):1135-42. PubMed ID: 22318474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.