These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26909347)

  • 1. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana.
    Crocoll C; Mirza N; Reichelt M; Gershenzon J; Halkier BA
    Front Bioeng Biotechnol; 2016; 4():14. PubMed ID: 26909347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of the cancer-preventive glucoraphanin in tobacco.
    Mikkelsen MD; Olsen CE; Halkier BA
    Mol Plant; 2010 Jul; 3(4):751-9. PubMed ID: 20457641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli.
    Mirza N; Crocoll C; Erik Olsen C; Ann Halkier B
    Metab Eng; 2016 May; 35():31-37. PubMed ID: 26410451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Heterologous Glucoraphanin Production
    Barnum CR; Endelman BJ; Ornelas IJ; Pignolet RM; Shih PM
    ACS Synth Biol; 2022 May; 11(5):1865-1873. PubMed ID: 35438493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and optimization of the 2-phenylethylglucosinolate production in Nicotiana benthamiana by combining biosynthetic genes from Barbarea vulgaris and Arabidopsis thaliana.
    Wang C; Crocoll C; Agerbirk N; Halkier BA
    Plant J; 2021 May; 106(4):978-992. PubMed ID: 33624307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing Biosynthetic Pathway of the Plant-Derived Cancer Chemopreventive-Precursor Glucoraphanin in Escherichia coli.
    Yang H; Liu F; Li Y; Yu B
    ACS Synth Biol; 2018 Jan; 7(1):121-131. PubMed ID: 29149798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Arabidopsis CYP79C1 and CYP79C2 by Glucosinolate Pathway Engineering in
    Wang C; Dissing MM; Agerbirk N; Crocoll C; Halkier BA
    Front Plant Sci; 2020; 11():57. PubMed ID: 32117393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli.
    Yang H; Qin J; Wang X; Ei-Shora HM; Yu B
    Microbiol Res; 2020 Sep; 238():126484. PubMed ID: 32408045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae.
    Wang C; Poborsky M; Crocoll C; Nødvig CS; Mortensen UH; Halkier BA
    Appl Environ Microbiol; 2022 Nov; 88(22):e0097822. PubMed ID: 36326240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Variation of Glucosinolates and Their Breakdown Products in Broccoli (
    Wang J; Yu H; Zhao Z; Sheng X; Shen Y; Gu H
    J Agric Food Chem; 2019 Nov; 67(45):12528-12537. PubMed ID: 31631662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).
    Yin L; Chen C; Chen G; Cao B; Lei J
    Molecules; 2015 Nov; 20(11):20254-67. PubMed ID: 26569208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Reactivation of Lignin Biosynthesis for the Heterologous Production of Etoposide Aglycone in
    Kim SS; Wengier DL; Ragland CJ; Sattely ES
    ACS Synth Biol; 2022 Oct; 11(10):3379-3387. PubMed ID: 36122905
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of glucosinolates--gene discovery and beyond.
    Sønderby IE; Geu-Flores F; Halkier BA
    Trends Plant Sci; 2010 May; 15(5):283-90. PubMed ID: 20303821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa.
    Falk KL; Vogel C; Textor S; Bartram S; Hick A; Pickett JA; Gershenzon J
    Phytochemistry; 2004 Apr; 65(8):1073-84. PubMed ID: 15110687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli.
    Tian M; Yang Y; Ávila FW; Fish T; Yuan H; Hui M; Pan S; Thannhauser TW; Li L
    J Agric Food Chem; 2018 Aug; 66(30):8036-8044. PubMed ID: 29975053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family.
    Augustine R; Bisht NC
    Sci Rep; 2015 Dec; 5():18005. PubMed ID: 26657321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.
    Qian H; Sun B; Miao H; Cai C; Xu C; Wang Q
    Food Chem; 2015 Feb; 168():321-6. PubMed ID: 25172716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage.
    West LG; Meyer KA; Balch BA; Rossi FJ; Schultz MR; Haas GW
    J Agric Food Chem; 2004 Feb; 52(4):916-26. PubMed ID: 14969551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of sulfur metabolism enables efficient glucosinolate engineering.
    Møldrup ME; Geu-Flores F; Olsen CE; Halkier BA
    BMC Biotechnol; 2011 Jan; 11():12. PubMed ID: 21281472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation and purification of glucoraphanin from broccoli seeds by solid phase extraction and preparative high performance liquid chromatography.
    Rochfort S; Caridi D; Stinton M; Trenerry VC; Jones R
    J Chromatogr A; 2006 Jul; 1120(1-2):205-10. PubMed ID: 16457830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.