These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 26909433)
1. Does allochthony in lakes change across an elevation gradient? Rose KC; Williamson CE; Kissman CE; Saros JE Ecology; 2015 Dec; 96(12):3281-91. PubMed ID: 26909433 [TBL] [Abstract][Full Text] [Related]
2. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Berggren M; Ziegler SE; St-Gelais NF; Beisner BE; Del Giorgio PA Ecology; 2014 Jul; 95(7):1947-59. PubMed ID: 25163126 [TBL] [Abstract][Full Text] [Related]
3. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments. Singh S; Dash P; Silwal S; Feng G; Adeli A; Moorhead RJ Environ Sci Pollut Res Int; 2017 Jun; 24(16):14124-14141. PubMed ID: 28417327 [TBL] [Abstract][Full Text] [Related]
4. Antagonistic effects of temperature and dissolved organic carbon on fish growth in California mountain lakes. Symons CC; Schulhof MA; Cavalheri HB; Shurin JB Oecologia; 2019 Jan; 189(1):231-241. PubMed ID: 30426209 [TBL] [Abstract][Full Text] [Related]
5. Influence of precipitation, landscape and hydrogeomorphic lake features on pelagic allochthonous indicators in two connected ultraoligotrophic lakes of North Patagonia. Queimaliños C; Reissig M; Diéguez Mdel C; Arcagni M; Ribeiro Guevara S; Campbell L; Cárdenas CS; Rapacioli R; Arribére M Sci Total Environ; 2012 Jun; 427-428():219-28. PubMed ID: 22560246 [TBL] [Abstract][Full Text] [Related]
6. Linking landscape heterogeneity with lake dissolved organic matter properties assessed through absorbance and fluorescence spectroscopy: Spatial and seasonal patterns in temperate lakes of Southern Andes (Patagonia, Argentina). Queimaliños C; Reissig M; Pérez GL; Soto Cárdenas C; Gerea M; Garcia PE; García D; Diéguez MC Sci Total Environ; 2019 Oct; 686():223-235. PubMed ID: 31176821 [TBL] [Abstract][Full Text] [Related]
7. The Light-to-Nutrient Ratio in Alpine Lakes: Different Scenarios of Bacterial Nutrient Limitation and Community Structure in Lakes Above and Below the Treeline. Su Y; Du Y; Xing P Microb Ecol; 2022 May; 83(4):837-849. PubMed ID: 34363516 [TBL] [Abstract][Full Text] [Related]
8. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Jiang T; Bravo AG; Skyllberg U; Björn E; Wang D; Yan H; Green NW Water Res; 2018 Dec; 146():146-158. PubMed ID: 30243058 [TBL] [Abstract][Full Text] [Related]
9. Crossing Treeline: Bacterioplankton Communities of Alpine and Subalpine Rocky Mountain Lakes. Vincent K; Holland-Moritz H; Solon AJ; Gendron EMS; Schmidt SK Front Microbiol; 2021; 12():533121. PubMed ID: 35046907 [TBL] [Abstract][Full Text] [Related]
10. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes. Rofner C; Peter H; Catalán N; Drewes F; Sommaruga R; Pérez MT Glob Chang Biol; 2017 Jun; 23(6):2331-2344. PubMed ID: 27801530 [TBL] [Abstract][Full Text] [Related]
11. Bacterial community structure in patagonian Andean Lakes above and below timberline: from community composition to community function. Bastidas Navarro M; Balseiro E; Modenutti B Microb Ecol; 2014 Oct; 68(3):528-41. PubMed ID: 24863131 [TBL] [Abstract][Full Text] [Related]
12. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Williams CJ; Frost PC; Morales-Williams AM; Larson JH; Richardson WB; Chiandet AS; Xenopoulos MA Glob Chang Biol; 2016 Feb; 22(2):613-26. PubMed ID: 26390994 [TBL] [Abstract][Full Text] [Related]
13. The role of solar UV radiation in the ecology of alpine lakes. Sommaruga R J Photochem Photobiol B; 2001 Sep; 62(1-2):35-42. PubMed ID: 11693365 [TBL] [Abstract][Full Text] [Related]
14. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Aguilera X; Lazzaro X; Coronel JS Photochem Photobiol Sci; 2013 Sep; 12(9):1649-57. PubMed ID: 23722356 [TBL] [Abstract][Full Text] [Related]
15. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
17. [Dissolved Organic Matter Component and Source Characteristics of the Metropolitan Lakes and Reservoirs in a Typical Karst Region]. Ni MF; Zhou H; Ma YM; Su Y; Wang XD; Wang ZK Huan Jing Ke Xue; 2022 Jul; 43(7):3552-3561. PubMed ID: 35791539 [TBL] [Abstract][Full Text] [Related]
18. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon. Lapierre JF; Seekell DA; Del Giorgio PA Glob Chang Biol; 2015 Dec; 21(12):4425-35. PubMed ID: 26150108 [TBL] [Abstract][Full Text] [Related]
19. Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes. Catalán N; Rofner C; Verpoorter C; Pérez MT; Dittmar T; Tranvik L; Sommaruga R; Peter H Nat Commun; 2024 Mar; 15(1):2640. PubMed ID: 38531850 [TBL] [Abstract][Full Text] [Related]
20. Tree line advance reduces mixing and oxygen concentrations in arctic-alpine lakes through wind sheltering and organic carbon supply. Klaus M; Karlsson J; Seekell D Glob Chang Biol; 2021 Sep; 27(18):4238-4253. PubMed ID: 33960592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]