These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26909494)

  • 1. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease.
    Guha TK; Hausner G
    PLoS One; 2016; 11(2):e0150097. PubMed ID: 26909494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes.
    Guha TK; Hausner G
    Methods Mol Biol; 2017; 1498():135-152. PubMed ID: 27709573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A homing endonuclease with a switch: characterization of a twintron encoded homing endonuclease.
    Guha TK; Hausner G
    Fungal Genet Biol; 2014 Apr; 65():57-68. PubMed ID: 24508098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mtDNA rns gene landscape in the Ophiostomatales and other fungal taxa: twintrons, introns, and intron-encoded proteins.
    Hafez M; Majer A; Sethuraman J; Rudski SM; Michel F; Hausner G
    Fungal Genet Biol; 2013 Apr; 53():71-83. PubMed ID: 23403360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the I-Spom I endonuclease from fission yeast: insights into the evolution of a group I intron-encoded homing endonuclease.
    Pellenz S; Harington A; Dujon B; Wolf K; Schäfer B
    J Mol Evol; 2002 Sep; 55(3):302-13. PubMed ID: 12187383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. I-OmiI and I-OmiII: two intron-encoded homing endonucleases within the Ophiostoma minus rns gene.
    Hafez M; Guha TK; Hausner G
    Fungal Biol; 2014 Aug; 118(8):721-31. PubMed ID: 25110134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. I-ApeKI [corrected]: a novel intron-encoded LAGLIDADG homing endonuclease from the archaeon, Aeropyrum pernix K1.
    Nomura N; Morinaga Y; Shirai N; Sako Y
    Nucleic Acids Res; 2005 Jul; 33(13):e116. PubMed ID: 16049020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diversity of mtDNA rns introns among strains of Ophiostoma piliferum, Ophiostoma pluriannulatum and related species.
    Bilto IM; Hausner G
    Springerplus; 2016; 5(1):1408. PubMed ID: 27610327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intron landscape of the mtDNA cytb gene among the Ascomycota: introns and intron-encoded open reading frames.
    Guha TK; Wai A; Mullineux ST; Hausner G
    Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Oct; 29(7):1015-1024. PubMed ID: 29157056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cloning and expressing of cellulase gene (cbh2) from thermophilic fungi Chaetomium thermophilum CT2].
    Liu SA; Li DC; E SJ; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2005 Nov; 21(6):892-9. PubMed ID: 16468342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sporadic occurrence of a group I intron-like element in the mtDNA rnl gene of Ophiostoma novo-ulmi subsp. americana.
    Sethuraman J; Okoli CV; Majer A; Corkery TL; Hausner G
    Mycol Res; 2008 May; 112(Pt 5):564-82. PubMed ID: 18406119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum.
    Li AN; Li DC
    J Appl Microbiol; 2009 Feb; 106(2):369-80. PubMed ID: 19200305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The highly variable mitochondrial small-subunit ribosomal RNA gene of Ophiostoma minus.
    Hafez M; Hausner G
    Fungal Biol; 2011 Nov; 115(11):1122-37. PubMed ID: 22036291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and activity of the mitochondrial intron-encoded endonuclease, I-SceIV.
    Wernette CM
    Biochem Biophys Res Commun; 1998 Jul; 248(1):127-33. PubMed ID: 9675098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of a gene encoding β-glucosidase from Chaetomium thermophilum CT2 and its expression in Pichia pastoris.
    Xu R; Teng F; Zhang C; Li D
    J Mol Microbiol Biotechnol; 2011; 20(1):16-23. PubMed ID: 21273791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF.
    Wallweber GJ; Mohr S; Rennard R; Caprara MG; Lambowitz AM
    RNA; 1997 Feb; 3(2):114-31. PubMed ID: 9042940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of intronic homing endonuclease for successful horizontal transmission.
    Kurokawa S; Bessho Y; Higashijima K; Shirouzu M; Yokoyama S; Watanabe KI; Ohama T
    FEBS J; 2005 May; 272(10):2487-96. PubMed ID: 15885098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology.
    Ar E; Demiroğlu A; Yılmaz MS; Yılmazer B; Aslan ES; Binay B
    Protein J; 2021 Aug; 40(4):504-511. PubMed ID: 33999303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile self-splicing group I introns from the psbA gene of Chlamydomonas reinhardtii: highly efficient homing of an exogenous intron containing its own promoter.
    Odom OW; Holloway SP; Deshpande NN; Lee J; Herrin DL
    Mol Cell Biol; 2001 May; 21(10):3472-81. PubMed ID: 11313473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion).
    Turmel M; Côté V; Otis C; Mercier JP; Gray MW; Lonergan KM; Lemieux C
    Mol Biol Evol; 1995 Jul; 12(4):533-45. PubMed ID: 7659010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.