BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26909570)

  • 1. Dynamically Complex [6+4] and [4+2] Cycloadditions in the Biosynthesis of Spinosyn A.
    Patel A; Chen Z; Yang Z; Gutiérrez O; Liu HW; Houk KN; Singleton DA
    J Am Chem Soc; 2016 Mar; 138(11):3631-4. PubMed ID: 26909570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of water and enzyme SpnF on the dynamics and energetics of the ambimodal [6+4]/[4+2] cycloaddition.
    Yang Z; Yang S; Yu P; Li Y; Doubleday C; Park J; Patel A; Jeon BS; Russell WK; Liu HW; Russell DH; Houk KN
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E848-E855. PubMed ID: 29348209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A.
    Kim HJ; Ruszczycky MW; Choi SH; Liu YN; Liu HW
    Nature; 2011 May; 473(7345):109-12. PubMed ID: 21544146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Insights into an Enzyme-Catalyzed [4+2] Cycloaddition.
    Zheng Y; Thiel W
    J Org Chem; 2017 Dec; 82(24):13563-13571. PubMed ID: 29131960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the mechanism of the SpnF-catalyzed [4+2]-cycloaddition reaction in the biosynthesis of spinosyn A.
    Jeon BS; Ruszczycky MW; Russell WK; Lin GM; Kim N; Choi SH; Wang SA; Liu YN; Patrick JW; Russell DH; Liu HW
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10408-10413. PubMed ID: 28874588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-catalysed [6+4] cycloadditions in the biosynthesis of natural products.
    Zhang B; Wang KB; Wang W; Wang X; Liu F; Zhu J; Shi J; Li LY; Han H; Xu K; Qiao HY; Zhang X; Jiao RH; Houk KN; Liang Y; Tan RX; Ge HM
    Nature; 2019 Apr; 568(7750):122-126. PubMed ID: 30867595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted, highly asynchronous, enzyme-catalyzed [4 + 2] cycloaddition in the biosynthesis of spinosyn A; computational evidence.
    Hess BA; Smentek L
    Org Biomol Chem; 2012 Oct; 10(37):7503-9. PubMed ID: 22885939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total synthesis of (-)-spinosyn A: examination of structural features that govern the stereoselectivity of the key transannular Diels-Alder reaction.
    Winbush SM; Mergott DJ; Roush WR
    J Org Chem; 2008 Mar; 73(5):1818-29. PubMed ID: 18215065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of a model system of enzyme-mediated [4+2] cycloaddition reaction.
    Gordeev EG; Ananikov VP
    PLoS One; 2015; 10(4):e0119984. PubMed ID: 25853669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diels-Alder reactions of allene with benzene and butadiene: concerted, stepwise, and ambimodal transition states.
    Pham HV; Houk KN
    J Org Chem; 2014 Oct; 79(19):8968-76. PubMed ID: 25216056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transannular [6 + 4] and Ambimodal Cycloaddition in the Biosynthesis of Heronamide A.
    Yu P; Patel A; Houk KN
    J Am Chem Soc; 2015 Oct; 137(42):13518-23. PubMed ID: 26435377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state.
    Celebi-Olçüm N; Ess DH; Aviyente V; Houk KN
    J Org Chem; 2008 Oct; 73(19):7472-80. PubMed ID: 18781801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the [4 + 2]- and [5 + 4]-cycloaddition reactions in zig-zag carbon nanotubes
    Sangolkar AA; Pawar R
    RSC Adv; 2020 Mar; 10(19):11111-11120. PubMed ID: 35495313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Possible Routes for SpnF-Catalyzed Formal Diels-Alder Cycloaddition.
    Medvedev MG; Zeifman AA; Novikov FN; Bushmarinov IS; Stroganov OV; Titov IY; Chilov GG; Svitanko IV
    J Am Chem Soc; 2017 Mar; 139(11):3942-3945. PubMed ID: 28240878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Diels-Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions.
    Houk KN; Liu F; Yang Z; Seeman JI
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12660-12681. PubMed ID: 32662195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambimodal Transition States in Diels-Alder Cycloadditions of Tropolone and Tropolonate with N-Methylmaleimide*.
    Zhang H; Thøgersen MK; Jamieson CS; Xue XS; Jørgensen KA; Houk KN
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):24991-24996. PubMed ID: 34472178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Frontiers of Higher-Order Cycloadditions.
    McLeod D; Thøgersen MK; Jessen NI; Jørgensen KA; Jamieson CS; Xue XS; Houk KN; Liu F; Hoffmann R
    Acc Chem Res; 2019 Dec; 52(12):3488-3501. PubMed ID: 31789016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent effects on the selectivity of ambimodal [6+4]/[4+2] cycloaddition.
    Gu W; Zhang JZH
    Phys Chem Chem Phys; 2024 Mar; 26(12):9636-9644. PubMed ID: 38466583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of Periselectivity and Regioselectivity in Ambimodal Tripericyclic [8+6]/[6+4]/[4+2] Intramolecular Cycloadditions of a Heptafulvenyl-Fulvene.
    Sengupta A; Houk KN
    J Phys Chem A; 2023 Sep; 127(38):7976-7983. PubMed ID: 37713722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diels-Alder and retro-Diels-Alder cycloadditions of (1,2,3,4,5-pentamethyl)cyclopentadiene to La@C(2v)-C(82): regioselectivity and product stability.
    Garcia-Borràs M; Luis JM; Swart M; Solà M
    Chemistry; 2013 Apr; 19(14):4468-79. PubMed ID: 23401007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.