BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26909774)

  • 1. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae.
    Deng Y; Sun M; Xu S; Zhou J
    J Appl Microbiol; 2016 Jul; 121(1):187-95. PubMed ID: 26909774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in
    Zhou P; Du Y; Fang X; Xu N; Yue C; Ye L
    J Agric Food Chem; 2021 Jan; 69(3):1003-1010. PubMed ID: 33427461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo biosynthesis of linalool from glucose in engineered Escherichia coli.
    Kong S; Fu X; Li X; Pan H; Guo D
    Enzyme Microb Technol; 2020 Oct; 140():109614. PubMed ID: 32912678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway.
    Zhang Y; Cao X; Wang J; Tang F
    Microb Cell Fact; 2022 Oct; 21(1):212. PubMed ID: 36243714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C; Pontini M; Maffei ME; Makris AM; Kampranis SC
    ACS Synth Biol; 2014 May; 3(5):298-306. PubMed ID: 24847684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.
    Zhao J; Li C; Zhang Y; Shen Y; Hou J; Bao X
    Microb Cell Fact; 2017 Jan; 16(1):17. PubMed ID: 28137282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae.
    Peng B; Nielsen LK; Kampranis SC; Vickers CE
    Metab Eng; 2018 May; 47():83-93. PubMed ID: 29471044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase.
    Rubat S; Varas I; Sepúlveda R; Almonacid D; González-Nilo F; Agosin E
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28854674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae.
    Rico J; Pardo E; Orejas M
    Appl Environ Microbiol; 2010 Oct; 76(19):6449-54. PubMed ID: 20675444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae].
    Li RS; Wang D; Shi YS; Xu LP; Zhang XL; Wang K; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):897-905. PubMed ID: 35285188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes.
    Albertsen L; Chen Y; Bach LS; Rattleff S; Maury J; Brix S; Nielsen J; Mortensen UH
    Appl Environ Microbiol; 2011 Feb; 77(3):1033-40. PubMed ID: 21148687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.
    Ohto C; Muramatsu M; Obata S; Sakuradani E; Shimizu S
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1327-34. PubMed ID: 20393702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli.
    Mendez-Perez D; Alonso-Gutierrez J; Hu Q; Molinas M; Baidoo EEK; Wang G; Chan LJG; Adams PD; Petzold CJ; Keasling JD; Lee TS
    Biotechnol Bioeng; 2017 Aug; 114(8):1703-1712. PubMed ID: 28369701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Biosynthesis of
    Wang X; Wu J; Chen J; Xiao L; Zhang Y; Wang F; Li X
    J Agric Food Chem; 2020 Aug; 68(31):8381-8390. PubMed ID: 32657129
    [No Abstract]   [Full Text] [Related]  

  • 17. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica.
    Taratynova MO; Tikhonova EE; Fedyaeva IM; Dementev DA; Yuzbashev TV; Solovyev AI; Sineoky SP; Yuzbasheva EY
    Appl Biochem Biotechnol; 2024 Mar; 196(3):1304-1315. PubMed ID: 37392322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoterpenoid biosynthesis in Saccharomyces cerevisiae.
    Oswald M; Fischer M; Dirninger N; Karst F
    FEMS Yeast Res; 2007 May; 7(3):413-21. PubMed ID: 17096665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.
    Yang L; Jiang L; Li W; Yang Y; Zhang G; Luo Y
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1431-1441. PubMed ID: 28695386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae].
    Sun M; Liu J; Du G; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):751-9. PubMed ID: 24063235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.