These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 26909782)
1. Fabrication and Photoluminescence Study of Large-Area Ordered and Size-Controlled GeSi Multi-quantum-well Nanopillar Arrays. Jiang Y; Huang S; Zhu Z; Zeng C; Fan Y; Jiang Z Nanoscale Res Lett; 2016 Dec; 11(1):102. PubMed ID: 26909782 [TBL] [Abstract][Full Text] [Related]
2. Enhanced photoluminescence from CdS with SiO2 nanopillar arrays. Li W; Wang S; He S; Wang J; Guo Y; Guo Y Sci Rep; 2015 Jun; 5():11375. PubMed ID: 26077552 [TBL] [Abstract][Full Text] [Related]
3. Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes. Dong P; Yan J; Zhang Y; Wang J; Geng C; Zheng H; Wei X; Yan Q; Li J Opt Express; 2014 Mar; 22(5):A320-7. PubMed ID: 24800288 [TBL] [Abstract][Full Text] [Related]
4. Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes. Dong P; Yan J; Zhang Y; Wang J; Geng C; Zheng H; Wei X; Yan Q; Li J Opt Express; 2014 Mar; 22 Suppl 2():A320-7. PubMed ID: 24922241 [TBL] [Abstract][Full Text] [Related]
5. Uniform SiGe/Si quantum well nanorod and nanodot arrays fabricated using nanosphere lithography. Chang HT; Wu BL; Cheng SL; Lee T; Lee SW Nanoscale Res Lett; 2013 Aug; 8(1):349. PubMed ID: 23924368 [TBL] [Abstract][Full Text] [Related]
6. Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process. Reddy NP; Naureen S; Mokkapati S; Vora K; Shahid N; Karouta F; Tan HH; Jagadish C Nanotechnology; 2016 Feb; 27(6):065304. PubMed ID: 26759272 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost Preparation of Diamond Nanopillar Arrays Based on Polystyrene Spheres. Tan X; He Z; Li W; Yang Q; Wang J; Cang L; Du Y; Qi H ACS Omega; 2024 Jun; 9(25):27492-27498. PubMed ID: 38947779 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of SiGe coaxial quantum wells on ordered Si nanopillars. Wu Z; Lei H; Zhou T; Fan Y; Zhong Z Nanotechnology; 2014 Feb; 25(5):055204. PubMed ID: 24406844 [TBL] [Abstract][Full Text] [Related]
9. Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates. Chen Y; Pan B; Nie T; Chen P; Lu F; Jiang Z; Zhong Z Nanotechnology; 2010 Apr; 21(17):175701. PubMed ID: 20357407 [TBL] [Abstract][Full Text] [Related]
10. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage. Jeon DW; Jang LW; Jeon JW; Park JW; Song YH; Jeon SR; Ju JW; Baek JH; Lee IH J Nanosci Nanotechnol; 2013 May; 13(5):3645-9. PubMed ID: 23858920 [TBL] [Abstract][Full Text] [Related]
11. Ordered GeSi nanorings grown on patterned Si (001) substrates. Ma Y; Cui J; Fan Y; Zhong Z; Jiang Z Nanoscale Res Lett; 2011 Mar; 6(1):205. PubMed ID: 21711732 [TBL] [Abstract][Full Text] [Related]
12. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers. Chen HC; Lin CC; Han HW; Tsai YL; Chang CH; Wang HW; Tsai MA; Kuo HC; Yu P Opt Express; 2011 Sep; 19 Suppl 5():A1141-7. PubMed ID: 21935257 [TBL] [Abstract][Full Text] [Related]
13. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography. Ho CC; Zhao K; Lee TY Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350 [TBL] [Abstract][Full Text] [Related]
15. Room-temperature infrared photoluminescence and broadband photodetection characteristics of Ge/GeSi islands on silicon-on-insulator. Singh S; John JW; Sarkar A; Dhyani V; Das S; Ray SK Nanotechnology; 2024 Nov; 36(4):. PubMed ID: 39419071 [TBL] [Abstract][Full Text] [Related]
16. Enhancing light coupling and emission efficiencies of AlGaN thin film and AlGaN/GaN multiple quantum wells with periodicity-wavelength matched nanostructure array. Guo W; Yang Z; Li J; Yang X; Zhang Y; Wang J; Chee KWA; Gao P; Ye J Nanoscale; 2017 Oct; 9(40):15477-15483. PubMed ID: 28976517 [TBL] [Abstract][Full Text] [Related]
17. Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching. Yang J; Zhang M; Lan X; Weng X; Shu Q; Wang R; Qiu F; Wang C; Yang Y Nanoscale Res Lett; 2018 Jun; 13(1):177. PubMed ID: 29892834 [TBL] [Abstract][Full Text] [Related]
18. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy. Ruan C; Eres G; Wang W; Zhang Z; Gu B Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Polymer Nanopillar Arrays with Controlled Tip Shapes and Their Application to Hydrophobic and Oleophobic Surfaces. Yanagishita T; Kurita M Langmuir; 2023 Jun; 39(24):8540-8547. PubMed ID: 37267583 [TBL] [Abstract][Full Text] [Related]
20. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates. Chen JK; Qui JQ; Fan SK; Kuo SW; Ko FH; Chu CW; Chang FC J Colloid Interface Sci; 2012 Feb; 367(1):40-8. PubMed ID: 22104277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]