These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 26909847)
1. Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors. Fraser KM; Haight JL; Gardner EL; Flagel SB Behav Brain Res; 2016 May; 305():87-99. PubMed ID: 26909847 [TBL] [Abstract][Full Text] [Related]
2. Lesions of the ventral hippocampus attenuate the acquisition but not expression of sign-tracking behavior in rats. Fitzpatrick CJ; Creeden JF; Perrine SA; Morrow JD Hippocampus; 2016 Nov; 26(11):1424-1434. PubMed ID: 27438780 [TBL] [Abstract][Full Text] [Related]
3. Dopamine D2 Modulation of Sign and Goal Tracking in Rats. Lopez JC; Karlsson RM; O'Donnell P Neuropsychopharmacology; 2015 Aug; 40(9):2096-102. PubMed ID: 25759299 [TBL] [Abstract][Full Text] [Related]
4. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Flagel SB; Watson SJ; Robinson TE; Akil H Psychopharmacology (Berl); 2007 Apr; 191(3):599-607. PubMed ID: 16972103 [TBL] [Abstract][Full Text] [Related]
5. The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Versaggi CL; King CP; Meyer PJ Psychopharmacology (Berl); 2016 Aug; 233(15-16):2985-97. PubMed ID: 27282365 [TBL] [Abstract][Full Text] [Related]
6. Lesions of the paraventricular nucleus of the thalamus differentially affect sign- and goal-tracking conditioned responses. Haight JL; Fraser KM; Akil H; Flagel SB Eur J Neurosci; 2015 Oct; 42(7):2478-88. PubMed ID: 26228683 [TBL] [Abstract][Full Text] [Related]
7. Cannabinoid receptor-1 signaling contributions to sign-tracking and conditioned reinforcement in rats. Bacharach SZ; Nasser HM; Zlebnik NE; Dantrassy HM; Kochli DE; Gyawali U; Cheer JF; Calu DJ Psychopharmacology (Berl); 2018 Oct; 235(10):3031-3043. PubMed ID: 30109373 [TBL] [Abstract][Full Text] [Related]
8. The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Haight JL; Campus P; Maria-Rios CE; Johnson AM; Klumpner MS; Kuhn BN; Covelo IR; Morrow JD; Flagel SB Psychopharmacology (Berl); 2020 Dec; 237(12):3741-3758. PubMed ID: 32852601 [TBL] [Abstract][Full Text] [Related]
9. Toward isolating the role of dopamine in the acquisition of incentive salience attribution. Chow JJ; Nickell JR; Darna M; Beckmann JS Neuropharmacology; 2016 Oct; 109():320-331. PubMed ID: 27371135 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Encoding of Incentive Salience in the Ventral Pallidum: Dependence on the Form of the Reward Cue. Ahrens AM; Ferguson LM; Robinson TE; Aldridge JW eNeuro; 2018; 5(2):. PubMed ID: 29740595 [TBL] [Abstract][Full Text] [Related]
11. Individual variation in the motivational and neurobiological effects of an opioid cue. Yager LM; Pitchers KK; Flagel SB; Robinson TE Neuropsychopharmacology; 2015 Mar; 40(5):1269-77. PubMed ID: 25425322 [TBL] [Abstract][Full Text] [Related]
12. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior in rats is dependent on sex and vendor. Turfe A; Westbrook SR; Lopez SA; Chang SE; Flagel SB Horm Behav; 2024 Aug; 164():105609. PubMed ID: 39083878 [TBL] [Abstract][Full Text] [Related]
13. Subanesthetic ketamine decreases the incentive-motivational value of reward-related cues. Fitzpatrick CJ; Morrow JD J Psychopharmacol; 2017 Jan; 31(1):67-74. PubMed ID: 27649773 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Dopamine Neurons Prevents Incentive Value Encoding of a Reward Cue: With Revelations from Deep Phenotyping. Iglesias AG; Chiu AS; Wong J; Campus P; Li F; Liu ZN; Bhatti JK; Patel SA; Deisseroth K; Akil H; Burgess CR; Flagel SB J Neurosci; 2023 Nov; 43(44):7376-7392. PubMed ID: 37709540 [TBL] [Abstract][Full Text] [Related]
15. Dissociable dopaminergic and pavlovian influences in goal-trackers and sign-trackers on a model of compulsive checking in OCD. Eagle DM; Schepisi C; Chugh S; Desai S; Han SYS; Huang T; Lee JJ; Sobala C; Ye W; Milton AL; Robbins TW Psychopharmacology (Berl); 2020 Dec; 237(12):3569-3581. PubMed ID: 32886158 [TBL] [Abstract][Full Text] [Related]
16. Long-lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to sign-tracking. Fraser KM; Janak PH Eur J Neurosci; 2017 Aug; 46(4):2047-2055. PubMed ID: 28699296 [TBL] [Abstract][Full Text] [Related]
17. Differential involvement of dopamine receptor subtypes in the acquisition of Pavlovian sign-tracking and goal-tracking responses. Roughley S; Killcross S Psychopharmacology (Berl); 2019 Jun; 236(6):1853-1862. PubMed ID: 30683942 [TBL] [Abstract][Full Text] [Related]
18. Dorsolateral neostriatum contribution to incentive salience: opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. DiFeliceantonio AG; Berridge KC Eur J Neurosci; 2016 May; 43(9):1203-18. PubMed ID: 26924040 [TBL] [Abstract][Full Text] [Related]
19. Which cue to 'want'? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking. DiFeliceantonio AG; Berridge KC Behav Brain Res; 2012 May; 230(2):399-408. PubMed ID: 22391118 [TBL] [Abstract][Full Text] [Related]
20. Can cleanerfish overcome temptation? A selective role for dopamine influence on cooperative-based decision making. Soares MC; Cardoso SC; Malato JT; Messias JP Physiol Behav; 2017 Feb; 169():124-129. PubMed ID: 27890590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]